Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 208: 112072, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34481248

ABSTRACT

Biosurfactants are molecules with surfactant properties produced by microorganisms, and can be used in various industrial sectors, e.g., the oil industry. These molecules can be used in enhanced oil recovery (EOR) in the pre-salt and post-salt reservoirs, where conditions of temperature, pressure, and salinity are quite varied, requiring a study of the stability of these molecules under these conditions. Bacillus velezensis H2O-1 produces five different surfactin homologs with a fatty-acid chain ranging from C11 to C16 and with a high capacity to reduce surface (24.8 mN.m-1) and interfacial tensions (1.5 and 0.8 8 mN.m-1 using light, medium oil and n-hexadecane, respectively). The critical micellar concentration (CMC) was 38.7 mg.L-1. Inversion wettability tests were carried out under the salinity conditions found in the post-salt (35 g.L-1) and pre-salt (70 g.L-1) reservoirs, in which it was observed that the surfactin reversed 100 % of the wettability of the calcite impregnated with light and medium oil. Using a central composite rotatable design, we demonstrated that surfactin maintained its interfacial properties when subjected simultaneously to extreme conditions of pressure, temperature and salinity commonly found in the post-salt (70 °C, 70 g.L-1 and 27.58 MPa) and pre-salt (100 °C, 150 g.L-1 and 48.2 MPa) layers. The results presented here highlight the efficiency and stability of H2O-1 surfactin in environmental conditions found in pre-salt and post-salt oil reservoirs.


Subject(s)
Bacillus , Lipopeptides , Oil and Gas Fields , Surface Tension , Surface-Active Agents
2.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200127, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33796137

ABSTRACT

BACKGROUND: Insects can be found in numerous diverse environments, being exposed to pathogenic organisms like fungi and bacteria. Once these pathogens cross insect physical barriers, the innate immune system operates through cellular and humoral responses. Antimicrobial peptides are small molecules produced by immune signaling cascades that develop an important and generalist role in insect defenses against a variety of microorganisms. In the present work, a cecropin B-like peptide (AgCecropB) sequence was identified in the velvetbean caterpillar Anticarsia gemmatalis and cloned in a bacterial plasmid vector for further heterologous expression and antimicrobial tests. METHODS: AgCecropB sequence (without the signal peptide) was cloned in the plasmid vector pET-M30-MBP and expressed in the Escherichia coli BL21(DE3) expression host. Expression was induced with IPTG and a recombinant peptide was purified using two affinity chromatography steps with Histrap column. The purified peptide was submitted to high-resolution mass spectrometry (HRMS) and structural analyses. Antimicrobial tests were performed using gram-positive (Bacillus thuringiensis) and gram-negative (Burkholderia kururiensis and E. coli) bacteria. RESULTS: AgCecropB was expressed in E. coli BL21 (DE3) at 28°C with IPTG 0.5 mM. The recombinant peptide was purified and enriched after purification steps. HRMS confirmed AgCrecropB molecular mass (4.6 kDa) and circular dichroism assay showed α-helix structure in the presence of SDS. AgCrecropB inhibited almost 50% of gram-positive B. thuringiensis bacteria growth. CONCLUSIONS: The first cecropin B-like peptide was described in A. gemmatalis and a recombinant peptide was expressed using a bacterial platform. Data confirmed tertiary structure as predicted for the cecropin peptide family. AgCecropB was capable to inhibit B. thuringiensis growth in vitro.

3.
Biotechnol Prog ; 37(3): e3131, 2021 05.
Article in English | MEDLINE | ID: mdl-33511791

ABSTRACT

The objective of this study was to compare the potential of mono-rhamnolipids (mono-RML) and di-rhamnolipids (di-RML) against biofilm formation on carbon steel coupons submitted to oil produced water for 14 days. The antibiofilm effect of the RML on the coupons was analyzed by scanning electron microscopy (SEM) and by epifluorescence microscopy, and the contact angle was measured using a goniometer. SEM analysis results showed that all RML congeners had effective antibiofilm action, as well as preliminary anticorrosion evaluation confirmed that all RML congeners prevented the metal deterioration. In more detail, epifluorescence microscopy showed that mono-RML were the most efficient congeners in preventing microorganism's adherence on the carbon steel metal. Image analyses indicate the presence of 15.9%, 3.4%, and <0.1% of viable particles in di-RML, mono/di-RML and mono-RML pretreatments, respectively, in comparison to control samples. Contact angle results showed that the crude carbon steel coupon presented hydrophobic character favoring hydrophobic molecules adhesion. We calculated the theoretical polarity of the RML congeners and verified that mono-RML (log P = 3.63) presented the most hydrophobic character. This had perfect correspondence to contact angle results, since mono-RML conditioning (58.2°) more significantly changed the contact angle compared with the conditioning with one of the most common surfactants used on oil industry (29.4°). Based on the results, it was concluded that rhamnolipids are efficient molecules to be used to avoid biofilm on carbon steel metal when submitted to oil produced water and that a higher proportion of mono-rhamnolipids is more indicated for this application.


Subject(s)
Biofilms/drug effects , Carbon/chemistry , Decanoates/pharmacology , Glycolipids/pharmacology , Rhamnose/analogs & derivatives , Steel/chemistry , Hydrophobic and Hydrophilic Interactions , Oil and Gas Industry , Oils , Rhamnose/pharmacology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...