Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; 175: 105949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583636

ABSTRACT

Aristolochia plants are emblematic from an ethnopharmacological viewpoint and are know to possess numerous biological properties, including antiseptic. However, the medicinal potential of these species is debatable because of their representative chemical constituents, aristolochic acids (AAs) and aristolactams (ALs), which are associated, for instance, with nephropathy and cancer. These contrasting issues have stimulated the development of approaches intended to detoxification of aristoloquiaceous biomasses, among which is included the bioconversion method using larvae of the specialist phytophagous insect Battus polydamas, previously shown to be viable for chemical diversification and to reduce toxicity. Thus, eleven Aristolochia spp. were bioconverted, and the antimicrobial activities of the plant methanolic extracts and its respective bioconversion products were evaluated. The best results were found for Aristolochia esperanzae, Aristolochia gibertii, and Aristolochia ringens against Bacillus cereus, with MIC ranging from 7.8 to 31.25 µg/mL. These three species were selected for chemical, antioxidant, cytotoxic, hemolytic, and mutagenic analyses. Chemical analysis revealed 65 compounds, 21 of them possible bioconversion products. The extracts showed potential to inhibit the formation and degradation of B. cereus biofilms. Extracts of A. gibertii and its bioconverted biomass showed antioxidant activity comparable to dibutylhydroxytoluene (BHT) standard. Bioconversion decreased the hemolytic activity of A. esperanzae and the cytotoxicities of A. esperanzae and A. gibertii. None of the extracts was found to be mutagenic. The bioactivities of the fecal extracts were maintained, and biocompatibility was improved. Therefore, the results obtained in this study reveal positive expectations about the natural detoxification process of the Aristolochia species.


Subject(s)
Aristolochia , Plant Extracts , Aristolochia/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Larva/drug effects , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Microbial Sensitivity Tests , Humans , Antioxidants/pharmacology , Bacillus cereus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Moths/drug effects
2.
Nat Prod Res ; 36(4): 1138-1142, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33287587

ABSTRACT

Ocotea minarum (Nees & Mart.) Mez., a native species of Brazil, is used in the treatment of infections and oxidative stress; however, there is no scientific evidence of its toxicological characteristics. We assessed the cytotoxicity, mutagenic activity, and acute oral toxicity of the aqueous extract isolated from O. minarum leaves. The cytotoxicity of this extract was evaluated in tumour and non-tumour cell lines, while the Ames test with a Salmonella Typhimurium was used to determine the mutagenic activity. Wistar rats received a single 2 g/kg dose as part of an LD50 toxicity assessment. Our results showed that the aqueous extract of O. minarum leaves did not present cytotoxic and mutagenic properties and was not toxic, with an LD50 greater than 2 g/kg. Therefore, the O. minarum extracts are pharmacologically safe and can continue to be investigated for the development of new drugs and herbal medicines.


Subject(s)
Ocotea , Animals , Lethal Dose 50 , Mutagenicity Tests , Mutagens/toxicity , Plant Extracts/toxicity , Plant Leaves , Rats , Rats, Wistar , Toxicity Tests, Acute
3.
J Ethnopharmacol ; 258: 112916, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32360045

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plinia cauliflora (Mart.) Kausel (Myrtaceae) is popularly known as "jaboticaba" or "jaboticaba". The fruit is appreciated for both fresh consumption and the manufacture of jelly, juice, ice cream, fermented beverages, and liqueurs. The more widespread traditional use of the plant involves the treatment of diarrhea, which utilizes all parts of the plant, including the fruit peels. AIM OF THE STUDY: We sought to elucidate possible risks of the administration of an ethanol-soluble fraction that was obtained from an infusion of P. cauliflora fruit peels (SEIPC). We performed a series of experiments to evaluate possible toxicity, in which we administered SEIPC orally both acutely and repeatedly for 28 days. We also evaluated possible endocrine-disruptive and genotoxic effects in eukaryotic cells. The possible mutagenic activity of SEIPC was evaluated using reverse mutation (Ames) assays. MATERIALS AND METHODS: SEIPC was produced and chemically characterized by LC-DAD-MS. Acute toxicity and behavioral and physiological alterations were evaluated in the modified Irwin test. Respiratory rate, arterial blood gas, electrocardiography, respiratory rate, heart rate, and blood pressure were evaluated, and hematological, biochemical, and histopathological analyses were performed after 28 days of oral treatment. The comet assay, mammalian erythrocyte micronucleus test, uterotrophic test, Hershberger bioassay, and AMES test were performed using appropriate protocols. RESULTS: From SEIPC, ellagic acid and derivatives, flavonols and anthocyanidins, as well as citric acid and gallic acid, were annotated by LC-DAD-MS. We did not observed any significant toxic effects after acute or prolonged SEIPC treatment. No endocrine-disruptive or mutagenic effects were observed. CONCLUSIONS: The present study found that SEIPC did not cause any significant alterations of various corporeal systems, including cardiac electrical activity, body temperature, respiratory rate, and arterial pressure. No alterations of biochemical, hematological, or blood gas parameters were observed. SEIPC did not cause any perturbations of the endocrine system or mutagenic, cytotoxic, or genotoxic effects. These findings substantiate the safe clinical use of P. cauliflora.


Subject(s)
Myrtaceae/chemistry , Plant Extracts/toxicity , Administration, Oral , Animals , Female , Fruit , Male , Mutagenicity Tests , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rats , Rats, Wistar , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...