ABSTRACT
Previous work has suggested that Trypanosoma cruzi diphosphohydrolase 1 (TcNTPDase-1) may be involved in the infection of mammalian cells and serve as a potential target for rational drug design. In this work, we produced recombinant TcNTPDase-1 and evaluated its nucleotidase activity, cellular localization and role in parasite adhesion to mammalian host cells. TcNTPDase-1 was able to utilize a broad range of triphosphate and diphosphate nucleosides. The enzyme's Km for ATP (0.096 mM) suggested a capability to influence the host's ATP-dependent purinergic signaling. The use of specific polyclonal antibodies allowed us to confirm the presence of TcNTPDase-1 at the surface of parasites by confocal and electron microscopy. In addition, electron microscopy revealed that TcNTPDase-1 was also found in the flagellum, flagellum insertion region, kinetoplast, nucleus and intracellular vesicles. The presence of this enzyme in the flagellum insertion region and vesicles suggests that it may have a role in nutrient acquisition, and the widespread distribution of TcNTPDase-1 within the parasite suggests that it may be involved in other biological process. Adhesion assays using anti-TcNTPDase-1 polyclonal antibodies as a blocker or purified recombinant TcNTPDase-1 as a competitor revealed that the enzyme has a role in parasite-host cell adhesion. These data open new frontiers to future studies on this specific parasite-host interaction and other unknown functions of TcNTPDase-1 related to its ubiquitous localization.