Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 132: 110900, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113433

ABSTRACT

Hancornia speciosa is a medicinal plant with proven antihypertensive activity. The cyclitol l-(+)-bornesitol is the main constituent of its leaves and is a potent inhibitor of the angiotensin-converting enzyme. We herein investigated the pharmacokinetic properties of bornesitol administered orally to Wistar rats, as well as bornesitol permeation in Caco-2 cells. Bornesitol was isolated and purified from an ethanol extract of H. speciosa leaves. An ultra-high performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-MS/MS) method was developed and validated to quantify bornesitol in rat plasma based on Multiple Reaction Monitoring, using pentaerythritol as an internal standard. Pharmacokinetics was evaluated by the administration of single doses via intravenous in bolus (3 mg/kg) and gavage (3, 15 and 25 mg/kg). Bornesitol permeation was assayed in a transwell Caco-2 cells model, tested alone, or combined with rutin, or as a constituent of H. speciosa extract, using a developed and validated UPLC-ESI-MS/MS method. All assayed validation parameters (selectivity, residual effect, matrix effect, linearity, precision, accuracy and stability of analyte in plasma and solution) for the bioanalytical method met the acceptance criteria established by regulatory guidelines. Bornestiol reached peak plasma concentration within approximately 60 min after oral administration with a half-life ranging from 72.15 min to 123.69 min. The peak concentration and area under the concentration-time curve of bornesitol did not rise proportionally with the increasing doses, suggesting a non-linear pharmacokinetics in rats and the oral bioavailability ranged from 28.5%-59.3%. Bornesitol showed low permeability in Caco-2 cells, but the permeability apparently increased when it was administered either combined with rutin or as a constituent of H. speciosa extract. In conclusion, bornesitol was rapidly absorbed after a single oral administration to rats and followed a non-linear pharmacokinetics. The obtained data will be useful to guide further pre-clinical development of bornesitol-containing herbal preparations of H. speciosa as an antihypertensive agent.


Subject(s)
Antihypertensive Agents/pharmacokinetics , Apocynaceae , Chromatography, High Pressure Liquid , Cyclitols/pharmacokinetics , Plant Extracts/pharmacokinetics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Administration, Oral , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/blood , Antihypertensive Agents/isolation & purification , Apocynaceae/chemistry , Biological Availability , Caco-2 Cells , Cyclitols/administration & dosage , Cyclitols/blood , Cyclitols/isolation & purification , Humans , Injections, Intravenous , Intestinal Absorption , Intestinal Mucosa/metabolism , Male , Models, Biological , Nonlinear Dynamics , Permeability , Plant Extracts/administration & dosage , Plant Extracts/blood , Plant Extracts/isolation & purification , Rats, Wistar
2.
Article in English | MEDLINE | ID: mdl-29866873

ABSTRACT

Progress toward the improvement of meglumine antimoniate (MA), commercially known as Glucantime, a highly effective but also toxic antileishmanial drug, has been hindered by the lack of knowledge and control of its chemical composition. Here, MA was manipulated chemically with the aim of achieving an orally effective drug. MA compounds were synthesized from either antimony pentachloride (MA-SbCl5) or potassium hexahydroxyantimonate [MA-KSb(OH)6] and prepared under a low polymerization state. These compounds were compared to Glucantime regarding chemical composition, permeation properties across a cellulose membrane and Caco-2 cell monolayer, and uptake by peritoneal macrophages. MA-SbCl5 and MA-KSb(OH)6 were characterized as less polymerized and more permeative 2:2 Sb-meglumine complexes than Glucantime, which consisted of a mixture of 2:3 and 3:3 Sb-meglumine complexes. The antileishmanial activities and hepatic uptake of all compounds were evaluated after oral administration in BALB/c mice infected with Leishmania infantum chagasi, as a model of visceral leishmaniasis (VL). The synthetic MA compounds given at 300 mg Sb/kg of body weight/12 h for 30 days significantly reduced spleen and liver parasite burdens, in contrast to those for Glucantime at the same dose. The greater activity of synthetic compounds could be attributed to their higher intestinal absorption and accumulation efficiency in the liver. MA-SbCl5 given orally was as efficacious as Glucantime by the parenteral route (80 mg Sb/kg/24 h intraperitoneally). These data taken together suggest that treatment with a less-polymerized form of MA by the oral route may be effective for the treatment of VL.


Subject(s)
Leishmaniasis, Visceral/drug therapy , Meglumine Antimoniate/therapeutic use , Administration, Oral , Animals , Caco-2 Cells , Disease Models, Animal , Female , Humans , Meglumine Antimoniate/administration & dosage , Meglumine Antimoniate/chemistry , Mice , Mice, Inbred BALB C , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...