Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(46): 26561-26574, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34811562

ABSTRACT

Silole derivatives have been extensively employed for developing organic optoelectronics, but few studies focused on the photophysical properties of the silole molecule. In this work, we investigate these properties by computing the absorption spectra and performing nonadiabatic molecular dynamics of silole employing the algebraic diagrammatic construction [ADC(2)] and extended multi-state XMS-CASPT2 ab initio electronic structure methods. For vertical excitations and excited state optimizations, the equation of motion coupled-cluster singles and doubles (EOM-CCSD) was also used. The nuclear ensemble and the fewest-switches surface hopping molecular dynamics methods coupled with the first two high-level electronic structure methods were applied to probe the relaxation mechanisms of silole. We could reproduce the experimental first absorption maximum value and found an ultrafast relaxation process occurring exclusively through ring-puckering distortions without breaking ring bonds or hydrogen elimination. Minimum energy conical intersection optimizations were carried out and potential energy curves, including triplet states, were calculated to further elucidate the relaxation process of silole.

SELECTION OF CITATIONS
SEARCH DETAIL
...