Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Microcirculation ; 30(7): e12825, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37549191

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effects of the antidiabetics liraglutide, a GLP-1 analog, and empagliflozin, an SGLT-2 inhibitor, on the brain microcirculation of diabetic rats. METHODS: Type 2 diabetes mellitus (DM) was experimentally induced in male Wistar rats by combining a high-fat diet and a low dose of streptozotocin (35 mg/kg). Liraglutide (100 µg/kg s.c.) and empagliflozin (10 mg/kg, oral) were administered for 5 weeks. Body weight was monitored periodically. Oral glucose tolerance, fasting glycemia, and blood triglycerides were evaluated after the treatments. Endothelial-leukocyte interactions in the brain microcirculation and structural capillary density were assessed. RESULTS: DM rats presented metabolic and cerebrovascular alterations. Liraglutide treatment decreased body weight and blood triglycerides of DM rats. Empagliflozin treatment improved glucose tolerance but only the combination therapy significantly reduced fasting blood glucose. Both treatments and their combination reduced leukocyte adhesion into the endothelium of brain venules. However, empagliflozin was more effective in preventing DM-induced microvascular rarefaction. CONCLUSION: These findings suggest that chronic treatment with SGLT2 inhibitors and GLP-1 receptor agonists may serve as potential therapeutic approaches to prevent microvascular complications associated with diabetes.

2.
Front Immunol ; 14: 1287512, 2023.
Article in English | MEDLINE | ID: mdl-38299144

ABSTRACT

Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.


Subject(s)
Lung Injury , Pneumonia , Respiratory Distress Syndrome , Humans , Sodium-Potassium-Exchanging ATPase/metabolism , Edema
3.
Sci Rep ; 12(1): 10673, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739230

ABSTRACT

To date, no specific diagnostic criteria for sepsis-associated encephalopathy (SAE) have been established. We studied 33 pediatric patients with sepsis prospectively and evaluated the level of consciousness, the presence of delirium, electroencephalographic (EEG) findings, and plasma levels of neuron-specific enolase and S100-calcium-binding protein-B. A presumptive diagnosis of SAE was primarily considered in the presence of a decreased level of consciousness and/or delirium (clinical criteria), but specific EEG abnormalities were also considered (EEG criteria). The time course of the biomarkers was compared between groups with and without clinical or EEG criteria. The Functional Status Scale (FSS) was assessed at admission, discharge, and 3-6 months post-discharge. Clinical criteria were identified in 75.8% of patients, EEG criteria in 26.9%, both in 23.1%, and none in 23.1%. Biomarkers did not differ between groups. Three patients had an abnormal FSS at discharge, but no one on follow-up. A definitive diagnostic pattern for SAE remained unclear. Clinical criteria should be the basis for diagnosis, but sedation may be a significant confounder, also affecting EEG interpretation. The role of biomarkers requires a better definition. The diagnosis of SAE in pediatric patients remains a major challenge. New consensual diagnostic definitions and mainly prognostic studies are needed.


Subject(s)
Delirium , Sepsis-Associated Encephalopathy , Aftercare , Biomarkers , Child , Electroencephalography , Humans , Patient Discharge , Sepsis-Associated Encephalopathy/diagnosis
4.
Viruses ; 14(5)2022 05 13.
Article in English | MEDLINE | ID: mdl-35632778

ABSTRACT

The virus responsible for COVID-19 is designated "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), a highly transmissible and pathogenic coronavirus. Although people of all ages are susceptible to SARS-CoV-2 infection, clinical manifestations may vary with age. The response of neonates to SARS-CoV-2 infection or exposure differs from that of children and adults. Encephalitis due to viral infections in the central nervous system (CNS) and childhood multisystem inflammatory syndrome (MIS-C) are some of the possible neonatal consequences of SARS-CoV-2 infection. This review aims to verify possible neonatal neurological outcomes after SARS-CoV-2 infection. Overall, the cellular and molecular basis of the neurological sequelae of SARS-CoV-2 in neonates remains unclear, and attempts to elucidate the pathophysiology of COVID-19 involve a comparison with the mechanism of other viral diseases. There are a considerable number of case reports in the literature exploring neurological outcomes in the neonatal period. In this review, we present possible effects of SARS-CoV-2 in neonates, emphasizing the importance of monitoring this group. The mechanisms of SARS-CoV-2 entry into the CNS have not yet been fully elucidated, and the potential severity of SARS-CoV-2 infection in neonates, as well as the possible short- and long-term neurological sequelae, remain unclear.


Subject(s)
COVID-19 , COVID-19/complications , Child , Humans , Infant, Newborn , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
5.
Dev Neurosci ; 44(1): 13-22, 2022.
Article in English | MEDLINE | ID: mdl-34695825

ABSTRACT

6-Shogaol is one of the main active phenolic components of ginger and has neuroprotective effects by protecting brain against the oxidative stress and regulate the levels of neurotrophic factors. The objective of the present study was to verify the effect of 6-shogaol on neurochemical parameters in offspring after maternal immune activation by lipopolysaccharide (LPS) in rats. Twelve pregnant Wistar rats received 100 µg/kg of LPS or saline solution on the gestational day 9.5. Male offspring participated in the study and from the postnatal days (PND) 30 and 55, respectively, they were supplemented with 6-shogaol or saline solution, by gavage at a dose of 10 mg/kg/day, orally for 5 days. In PND 37 and 62, analysis of kinase signaling regulated by extracellular signal 1/2 (ERK 1/2), levels of neurotrophic factor derived from the brain (BDNF), and neuron-specific enolase (NSE), lipid and protein oxidative damage was evaluated by 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine (3-NT), respectively, and myeloperoxidase (MPO) activity was performed in the hippocampus. Prenatal exposure to LPS significantly decreased ERK and BDNF levels in PND 37 and 62, increased NSE levels and lipid damage in rats in PND 37, and increased 3-NT level in rats in PND 62. With treatment using 6-shogaol, an increase in ERK and BDNF levels was identified in PND 37 and 62 and a reduction in HNE and MPO activity in rats in PND 37 and 62, respectively. 6-Shogaol positively increased markers of neuronal growth, plasticity and synaptic activity and reduced oxidative damage in the hippocampus in an animal model of autism by maternal immune activation.


Subject(s)
Lipopolysaccharides , Prenatal Exposure Delayed Effects , Animals , Brain-Derived Neurotrophic Factor/metabolism , Catechols , Female , Hippocampus/metabolism , Humans , Lipopolysaccharides/toxicity , Male , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Wistar , Saline Solution
6.
Front Med (Lausanne) ; 8: 767291, 2021.
Article in English | MEDLINE | ID: mdl-34869480

ABSTRACT

Background: The patients with coronavirus disease 2019 (COVID-19) associated with severe acute respiratory distress syndrome (ARDS) may require prolonged mechanical ventilation which often results in lung fibrosis, thus worsening the prognosis and increasing fatality rates. A mesenchymal stromal cell (MSC) therapy may decrease lung inflammation and accelerate recovery in COVID-19. In this context, some studies have reported the effects of MSC therapy for patients not requiring invasive ventilation or during the first hours of tracheal intubation. However, this is the first case report presenting the reduction of not only lung inflammation but also lung fibrosis in a critically ill long-term mechanically ventilated patient with COVID-19. Case Presentation: This is a case report of a 30-year-old male patient with COVID-19 under invasive mechanical ventilation for 14 days in the intensive care unit (ICU), who presented progressive clinical deterioration associated with lung fibrosis. The symptoms onset was 35 days before MSC therapy. The patient was treated with allogenic human umbilical-cord derived MSCs [5 × 107 (2 doses 2 days interval)]. No serious adverse events were observed during and after MSC administration. After MSC therapy, PaO2/FiO2 ratio increased, the need for vasoactive drugs reduced, chest CT scan imaging, which initially showed signs of bilateral and peripheral ground-glass, as well as consolidation and fibrosis, improved, and the systemic mediators associated with inflammation decreased. Modulation of the different cell populations in peripheral blood was also observed, such as a reduction in inflammatory monocytes and an increase in the frequency of patrolling monocytes, CD4+ lymphocytes, and type 2 classical dendritic cells (cDC2). The patient was discharged 13 days after the cell therapy. Conclusions: Mesenchymal stromal cell therapy may be a promising option in critically ill patients with COVID-19 presenting both severe lung inflammation and fibrosis. Further clinical trials could better assess the efficacy of MSC therapy in critically ill patients with COVID-19 with lung fibrosis associated with long-term mechanical ventilation.

7.
Neuroimmunomodulation ; 28(1): 1-21, 2021.
Article in English | MEDLINE | ID: mdl-33910207

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has devastating effects on the population worldwide. Given this scenario, the extent of the impact of the disease on more vulnerable individuals, such as pregnant women, is of great concern. Although pregnancy may be a risk factor in respiratory virus infections, there are no considerable differences regarding COVID-19 severity observed between pregnant and nonpregnant women. In these circumstances, an emergent concern is the possibility of neurodevelopmental and neuropsychiatric harm for the offspring of infected mothers. Currently, there is no stronger evidence indicating vertical transmission of SARS-CoV-2; however, the exacerbated inflammatory response observed in the disease could lead to several impairments in the offspring's brain. Furthermore, in the face of historical knowledge on possible long-term consequences for the progeny's brain after infection by viruses, we must consider that this might be another deleterious facet of COVID-19. In light of neuroimmune interactions at the maternal-fetal interface, we review here the possible harmful outcomes to the offspring brains of mothers infected by SARS-CoV-2.


Subject(s)
COVID-19/immunology , Neurodevelopmental Disorders/physiopathology , Neuroimmunomodulation/immunology , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/physiopathology , COVID-19/metabolism , COVID-19/physiopathology , Cytokine Release Syndrome/immunology , Decidua/immunology , Female , Humans , Immune Tolerance/immunology , Infectious Disease Transmission, Vertical , Neuroimmunomodulation/physiology , Placenta/immunology , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/physiopathology , SARS-CoV-2 , Umbilical Cord/immunology
8.
J Neuroinflammation ; 18(1): 60, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632243

ABSTRACT

BACKGROUND: The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. METHODS: Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1ß, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and ß-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. RESULTS: Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. CONCLUSION: These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter.


Subject(s)
Brain/immunology , Prenatal Exposure Delayed Effects/immunology , Sepsis/immunology , Animals , Behavior, Animal , Brain/metabolism , Cognitive Dysfunction/etiology , Female , Inflammation , Mice , Motor Activity/physiology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Sepsis/complications , Synapses/metabolism
9.
Mediators Inflamm ; 2020: 1839762, 2020.
Article in English | MEDLINE | ID: mdl-33110395

ABSTRACT

Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1ß. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.


Subject(s)
Cytokines/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Simvastatin/therapeutic use , Animals , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Nitric Oxide/metabolism , Peritoneal Lavage , Stem Cells
10.
Clin Chim Acta ; 495: 422-428, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31082361

ABSTRACT

Fatty acids are fundamental as energy and structural source to the human cells. They are not usually found free in human circulation. Alteration in fatty acids metabolism is linked to diseases such as diabetes, preeclampsia, heart disease, and some infectious diseases. Increased levels of non-esterified fatty acids (NEFA) may cause cell dysfunction and lipotoxicity. Since physiologically fatty acids are transported bound to albumin, we propose here a simple and cheap test that consists of albumin isoelectric focusing determination to measure the potential systemic NEFA cytotoxicity. For validation of this method, albumin isoelectric focusing in 51 serum samples from 40 critically ill patients and 11 controls was compared with NEFA/albumin ratios measured by HPLC. We called this approach an albumin saturation test. This test may indicate to physicians the potential NEFA lipotoxicity guiding them throughout better patient management. The albumin saturation test can point out serum albumin-NEFA saturation through a cheap assay that could be performed by any care facility.


Subject(s)
Fatty Acids/analysis , Isoelectric Focusing/methods , Serum Albumin/analysis , Biological Transport , Case-Control Studies , Fatty Acids/toxicity , Humans , Isoelectric Focusing/economics , Methods
11.
Oxid Med Cell Longev ; 2018: 6053492, 2018.
Article in English | MEDLINE | ID: mdl-30538802

ABSTRACT

The Mediterranean diet, rich in olive oil, is beneficial, reducing the risk of cardiovascular diseases and cancer. Olive oil is mostly composed of the monounsaturated fatty acid omega-9. We showed omega-9 protects septic mice modulating lipid metabolism. Sepsis is initiated by the host response to infection with organ damage, increased plasma free fatty acids, high levels of cortisol, massive cytokine production, leukocyte activation, and endothelial dysfunction. We aimed to analyze the effect of omega-9 supplementation on corticosteroid unbalance, inflammation, bacterial elimination, and peroxisome proliferator-activated receptor (PPAR) gamma expression, an omega-9 receptor and inflammatory modulator. We treated mice for 14 days with omega-9 and induced sepsis by cecal ligation and puncture (CLP). We measured systemic corticosterone levels, cytokine production, leukocyte and bacterial counts in the peritoneum, and the expression of PPAR gamma in both liver and adipose tissues during experimental sepsis. We further studied omega-9 effects on leukocyte rolling in mouse cremaster muscle-inflamed postcapillary venules and in the cerebral microcirculation of septic mice. Here, we demonstrate that omega-9 treatment is associated with increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the proinflammatory cytokines TNF-α and IL-1ß in peritoneal lavage fluid of mice with sepsis. Omega-9 treatment also decreased systemic corticosterone levels. Neutrophil migration from circulation to the peritoneal cavity and leukocyte rolling on the endothelium were decreased by omega-9 treatment. Omega-9 also decreased bacterial load in the peritoneal lavage and restored liver and adipose tissue PPAR gamma expression in septic animals. Our data suggest a beneficial anti-inflammatory role of omega-9 in sepsis, mitigating leukocyte rolling and leukocyte influx, balancing cytokine production, and controlling bacterial growth possibly through a PPAR gamma expression-dependent mechanism. The significant reduction of inflammation detected after omega-9 enteral injection can further contribute to the already known beneficial properties facilitated by unsaturated fatty acid-enriched diets.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/physiopathology , Oleic Acid/pharmacology , Sepsis/physiopathology , Animals , Chemotaxis, Leukocyte/drug effects , Disease Models, Animal , Leukocyte Rolling/drug effects , Mice , Olive Oil/chemistry
12.
Parasitol Res ; 117(11): 3585-3590, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30145706

ABSTRACT

Antimalarial interventions mostly rely upon drugs, as chloroquine. However, plasmodial strains resistant to many drugs are constantly reported, leading to an expansion of malaria cases. Novel approaches are required to circumvent the drug resistance issue. Here, we describe the antimalarial potential of the chloroquine analogue 2-[[2-[(7-chloro-4-quinolinyl)amino]ethyl]amino] ethanol (PQUI08001/06). We observed that PQUI08001/06 treatment reduces parasitemia of both chloroquine-resistant and -sensitive strains of Plasmodium falciparum in vitro and P. berghei in vivo. Our data suggests that PQUI08001/06 is a potential antimalarial therapeutic alternative approach that could also target chloroquine-resistant plasmodial strains.


Subject(s)
Antimalarials/therapeutic use , Chloroquine/analogs & derivatives , Chloroquine/therapeutic use , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Animals , Drug Resistance/drug effects , Humans , Malaria/drug therapy , Male , Mice , Parasitemia/drug therapy
13.
Front Immunol ; 9: 1147, 2018.
Article in English | MEDLINE | ID: mdl-29881388

ABSTRACT

Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in the understanding of its pathophysiology, asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodeling. Mesenchymal stromal cell (MSC)-based therapy mitigates lung inflammation in experimental allergic asthma; however, its ability to reduce airway remodeling is limited. We aimed to investigate whether pre-treatment with eicosapentaenoic acid (EPA) potentiates the therapeutic properties of MSCs in experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite (HDM) extract was intranasally administered to induce severe allergic asthma in mice. Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity in bronchoalveolar lavage fluid (BALF), thymus, lymph nodes, and bone marrow were analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resolvin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor (TGF)-ß1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimulated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes), and collagen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-ß), modulation of macrophages toward an anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, these modifications may explain the greater improvement in lung mechanics obtained. This may be a promising novel strategy to potentiate MSCs effects.


Subject(s)
Asthma/metabolism , Eicosapentaenoic Acid/pharmacology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Animals , Asthma/etiology , Asthma/pathology , Asthma/therapy , Biomarkers , Bone Marrow/immunology , Bone Marrow/metabolism , Bone Marrow/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/metabolism , Female , Immunohistochemistry , Inflammation Mediators/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Macrophage Activation/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mesenchymal Stem Cell Transplantation/methods , Mice , Mucus/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism
14.
Front Immunol ; 9: 901, 2018.
Article in English | MEDLINE | ID: mdl-29760707

ABSTRACT

Neutrophils are the first cells of our immune system to arrive at the site of inflammation. They release cytokines, e.g., chemokines, to attract further immune cells, but also actively start to phagocytose and kill pathogens. In the case of sepsis, this tightly regulated host defense mechanism can become uncontrolled and hyperactive resulting in severe organ damage. Currently, no effective therapy is available to fight sepsis; therefore, novel treatment targets that could prevent excessive inflammatory responses are warranted. Src Family tyrosine Kinases (SFK), a group of tyrosine kinases, have been shown to play a major role in regulating immune cell recruitment and host defense. Leukocytes with SFK depletion display severe spreading and migration defects along with reduced cytokine production. Thus, we investigated the effects of dasatinib, a tyrosine kinase inhibitor, with a strong inhibitory capacity on SFKs during sterile inflammation and polymicrobial sepsis in mice. We found that dasatinib-treated mice displayed diminished leukocyte adhesion and extravasation in tumor necrosis factor-α-stimulated cremaster muscle venules in vivo. In polymicrobial sepsis, sepsis severity, organ damage, and clinical outcome improved in a dose-dependent fashion pointing toward an optimal therapeutic window for dasatinib dosage during polymicrobial sepsis. Dasatinib treatment may, therefore, provide a balanced immune response by preventing an overshooting inflammatory reaction on the one side and bacterial overgrowth on the other side.


Subject(s)
Dasatinib/pharmacology , Neutrophil Infiltration/drug effects , Protein Kinase Inhibitors/pharmacology , Sepsis/immunology , Animals , Cell Adhesion/drug effects , Disease Models, Animal , Male , Mice , src-Family Kinases/antagonists & inhibitors
15.
Nutrition ; 35: 119-127, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28241979

ABSTRACT

OBJECTIVE: Supplementation with ω-3 polyunsaturated fatty acids (PUFAs) can positively contribute to neurologic development, modulating inflammatory responses, promoting homeostasis, and having a positive effect on animal behaviors associated with mental disorders. The aim of this study was to evaluate behavioral and biochemical effects of ω-3 fatty acid supplementation in an animal model for mental disorders by prenatal maternal exposure to lipopolysaccardies (LPS) from the maternal immune activation. METHODS: Twelve pregnant Wistar rats were used. Each rat received 100 µg/kg of LPS or saline solution on gestational day (GD) 9.5. The offspring remained with mothers until weaning and from postnatal day (PND) 30 were supplemented with ω-3 PUFA or saline solution by gavage at a dose of 0.8 g/kg orally for 21 d. On PND 52, the animals underwent behavioral tests; then, they were sacrificed, and the brain structures were dissected and analyzed by levels: neuron-specific enolase (NSE), brain-derived neurotrophic factor, and transforming growth factor (TGF)-ß. RESULT: Prenatal exposure to LPS significantly increased the episodes of stereotyped movements and decreased social interaction in the offspring (P = 0.009 and P = 0.001, respectively), after ω-3 PUFA supplementation these parameters reversed (P = 0.005 and P = 0.013, respectively). Significant changes also were identified in the biochemical analysis in NSE and TGF-ß in the brain structures; these conditions were reversed after ω-3 PUFA supplementation. CONCLUSION: Supplementation with ω-3 PUFA reversed animal behaviors that often are observed in autism and other mental disorders in rats prenatally exposed to LPS, and also exerted neuroprotective effects in marker levels of neuronal damage and expression of TGF-ß.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Interpersonal Relations , Lipopolysaccharides/toxicity , Prenatal Exposure Delayed Effects , Stereotyped Behavior/drug effects , Animals , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Dietary Supplements , Female , Male , Pregnancy , Rats , Rats, Wistar , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Weaning
16.
J Biophotonics ; 9(11-12): 1208-1221, 2016 12.
Article in English | MEDLINE | ID: mdl-27649282

ABSTRACT

Recent studies show that low-level laser therapy (LLLT) has an important anti-inflammatory action in acute lung inflammation. The present work explored if laser therapy is able to antagonize eosinophils and allergic inflammation induced by oxidative stress in Balb/c mice. Forty-eight hours after challenge, the leukocyte counting, ROS and nitrite/nitrate level, RANTES, CCL3, CCL8 as well as eotaxins were measured in the bronchoalveolar lavage fluid (BALF) of laser-treated mice or not. Into the lung, some chemokines receptors, the iNOS activity and mRNA expression, and the activities of superoxide dismutase (SOD), catalase, gluthatione, NADPH oxidase activities and thiobarbituric acid reactive species (T-Bars) were measured. Laser-treated allergic mice presented reduction of both the ICAM-1 and eosinophil in the lungs. RANTES, CCL8, CCL3 and eotaxins were reduced in BALF of laser-treated allergic mice. In allergic mice lung LLLT decreased the CCR1 and CCR3 and restored the oxidative stress balance as well. Laser decreased the lipidic peroxidation in allergic mice lung as much as increased SOD, GPx and GR. It shows that LLLT on allergic lung inflammation involves leukocyte-attractant chemokines and endogenous antioxidant. Based on results, LLLT may ultimately become a non- invasive option in allergic lung disease treatment. The top figure illustrates the laser decreasing the eosinophils migration into BALF and the bottom figure shows the laser upregulating the expression of heme-oxygenase (anti-oxidant enzyme) in lung tissue anti-oxidant.


Subject(s)
Asthma/radiotherapy , Chemokines/metabolism , Inflammation/radiotherapy , Low-Level Light Therapy , Oxidative Stress , Animals , Lung/physiopathology , Lung/radiation effects , Mice , Mice, Inbred BALB C
17.
Inflamm Res ; 65(8): 587-602, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26995266

ABSTRACT

INTRODUCTION: Sepsis is a complex inflammatory disorder believed to originate from an infection by any types of microbes and/or their products. It is the leading cause of death in intensive care units (ICUs) throughout the globe. The mortality rates depend both on the severity of infection and the host's response to infection. METHODS: Literature survey on pathobiology of sepsis in general and failure of more than hundred clinical trials conducted so far in search of a possible cure for sepsis resulted in the preparation of this manuscript. FINDINGS: Sepsis lacks a suitable animal model that mimics human sepsis. However, based on the results obtained in animal models of sepsis, clinical trials conducted so far have been disappointing. Although involvement of multiple mediators and pathways in sepsis has been recognized, only few components are being targeted and this could be the major reason behind the failure of clinical trials. CONCLUSION: Inability to recognize a single critical mediator of sepsis may be the underlying cause for the poor therapeutic intervention of sepsis. Therefore, sepsis is still considered as a disease-in search of cure.


Subject(s)
Sepsis , Animals , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/immunology , Disease Models, Animal , Humans , Lipopolysaccharides/immunology , Sepsis/drug therapy , Sepsis/epidemiology , Sepsis/etiology , Sepsis/immunology
18.
PLoS One ; 11(1): e0147005, 2016.
Article in English | MEDLINE | ID: mdl-26789403

ABSTRACT

Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1ß, transforming growth factor-ß, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis.


Subject(s)
Dasatinib/pharmacology , Macrophages/metabolism , Neutrophils/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Fibrosis/drug therapy , Silicosis/drug therapy , Acute Disease , Animals , Cell Line , Cytokines/metabolism , Disease Models, Animal , Female , Macrophages/pathology , Matrix Metalloproteinase 9/metabolism , Mice , Neutrophils/pathology , Nitric Oxide Synthase Type II/metabolism , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Silicosis/metabolism , Silicosis/pathology
19.
Mol Cancer ; 14: 105, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25976744

ABSTRACT

BACKGROUND: Na/K-ATPase (NKA) is inhibited by perillyl alcohol (POH), a monoterpene used in the treatment of tumors, including brain tumors. The NKA α1 subunit is known to be superexpressed in glioblastoma cells (GBM). This isoform is embedded in caveolar structures and is probably responsible for the signaling properties of NKA during apoptosis. In this work, we showed that POH acts in signaling cascades associated with NKA that control cell proliferation and/or cellular death. METHODS: NKA activity was measured by the amount of non-radioactive Rb(+) incorporation into cultured GBM cell lines (U87 and U251) and non-tumor cells (mouse astrocytes and VERO cells). Cell viability was measured by lactate dehydrogenase levels in the supernatants of POH-treated cells. Activated c-Jun N-terminal Kinase (JNK) and p38 were assessed by western blotting. Apoptosis was detected by flow cytometry and immunocytochemistry, and the release of interleukins was measured by ELISA. RESULTS: All four cell types tested showed a similar sensitivity for POH. Perillic acid (PA), the main metabolite of POH, did not show any effect on these cells. Though the cell viability decreased in a dose-dependent manner when cells were treated with POH, the maximum cytotoxic effect of PA obtained was 30% at 4 mM. 1.5 mM POH activated p38 in U87 cells and JNK in both U87 and U251 cells as well as mouse astrocytes. Dasatinib (an inhibitor of the Src kinase family) and methyl ß-cyclodextrin (which promotes cholesterol depletion in cell membranes) reduced the POH-induced activation of JNK1/2 in U87 cells, indicating that the NKA-Src complex participates in this mechanism. Inhibition of JNK1/2 by the JNK inhibitor V reduced the apoptosis of GBM cells that resulted from POH administration, indicating the involvement of JNK1/2 in programmed cell death. 1.5 mM POH increased the production of interleukin IL-8 in the U251 cell supernatant, which may indicate a possible strategy by which cells avoid the cytotoxic effects of POH. CONCLUSIONS: A signaling mechanism mediated by NKA may have an important role in the anti-tumor action of POH in GBM cells.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Monoterpenes/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclohexenes/pharmacology , Cytokines/metabolism , Dasatinib/pharmacology , Enzyme Activation/drug effects , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Models, Biological , beta-Cyclodextrins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
20.
BMC Res Notes ; 7: 798, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25399325

ABSTRACT

BACKGROUND: Among the characteristics of acute respiratory distress syndrome (ARDS) is edema formation and its resolution depends on pneumocyte Na/K-ATPase activity. Increased concentration of oleic acid (OA) in plasma induces lung injury by targeting Na/K-ATPase and, thus, interfering in sodium transport. FINDINGS: Presently, we adapted a radioactivity-free assay to detect Na/K-ATPase activity in perfused lung mice, comparing the inhibitory effect of ouabain and OA. We managed to perfuse only the lung, avoiding the systemic loss of rubidium. Rb+ incorporation into lung was measured by inductively coupled plasma optical emission spectrometry (ICP OES) technique, after lung tissue digestion. Na/K-ATPase activity was the difference between Rb+ incorporation with or without ouabain. Lung Na/K-ATPase was completely inhibited by perfusion with ouabain. However, OA caused a partial inhibition. CONCLUSIONS: In the present work the amount of incorporated Rb+ was greater than seen in our previous report, showing that the present technique is trustworthy. This new proposed assay may allow researchers to study the importance of Na/K-ATPase activity in lung pathophysiology.


Subject(s)
Enzyme Assays/methods , Lung/enzymology , Perfusion , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Lung/drug effects , Male , Mice , Okadaic Acid/pharmacology , Ouabain/pharmacology , Rubidium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...