Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Precis Oncol ; 7(1): 36, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041305

ABSTRACT

The advent of next-generation sequencing (NGS) has allowed for the identification of novel therapeutic targets for patients with uncommon cancers. It is well known that fusion translocations are potent driver of cancer pathogenesis and can render tumors exquisitely sensitive to matching targeted therapies. Here we describe a patient with ALK-fusion positive widely metastatic salivary ductal carcinoma, who achieved a durable complete response from alectinib, a potent and specific ALK tyrosine kinase inhibitor. This case serves as another reminder that ALK-fusions can be targeted regardless of histology and can afford patients dramatic and durable benefit. It also emphasizes the need for insurance coverage for such beneficial therapies. While ALK fusions are exceedingly rare in salivary ductal carcinoma, the presence of multiple other targetable aberrations supports the recommendation for universal NGS testing for such tumors.

2.
Eur Radiol ; 32(12): 8670-8680, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35751699

ABSTRACT

OBJECTIVES: To test whether a 4-fold accelerated 3D T2-weighted (T2) CAIPIRINHA SPACE TSE sequence with isotropic voxel size is equivalent to conventional 2DT2 TSE for the evaluation of intrinsic and perilesional soft tissue tumors (STT) characteristics. METHODS: For 108 patients with histologically-proven STTs, MRI, including 3DT2 (CAIPIRINHA SPACE TSE) and 2DT2 (TSE) sequences, was performed. Two radiologists evaluated each sequence for quality (diagnostic, non-diagnostic), tumor characteristics (heterogeneity, signal intensity, margin), and the presence or absence of cortical involvement, marrow edema, and perilesional edema (PLE); tumor size and PLE extent were measured. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios and acquisition times for 2DT2 in two planes and 3DT2 sequences were reported. Descriptive statistics and inter-method agreement were reported. RESULTS: Image quality was diagnostic for all sequences (100% [108/108]). No difference was observed between 3DT2 and 2DT2 tumor characteristics (p < 0.05). There was no difference in mean tumor size (3DT2: 2.9 ± 2.5 cm, 2DT2: 2.8 ± 2.6 cm, p = 0.4) or PLE extent (3DT2:0.5 ± 1.2 cm, 2DT2:0.5 ± 1.0 cm, p = 0.9) between the sequences. There was no difference in the SNR of tumors, marrow, and fat between the sequences, whereas the SNR of muscle was higher (p < 0.05) on 3DT2 than 2DT2. CNR measures on 3DT2 were similar to 2DT2 (p > 0.1). The average acquisition time was shorter for 3DT2 compared with 2DT2 (343 ± 127 s vs 475 ± 162 s, respectively). CONCLUSION: Isotropic 3DT2 MRI offers higher spatial resolution, faster acquisition times, and equivalent assessments of STT characteristics compared to conventional 2DT2 MRI in two planes. 3DT2 is interchangeable with a 2DT2 sequence in tumor protocols. KEY POINTS: • Isotropic 3DT2 CAIPIRINHA SPACE TSE offers higher spatial resolution than 2DT2 TSE and is equivalent to 2DT2 TSE for assessments of soft tissue tumor intrinsic and perilesional characteristics. • Multiplanar reformats of 3DT2 CAIPIRINHA SPACE TSE can substitute for 2DT2 TSE acquired in multiple planes, thereby reducing the acquisition time of MRI tumor protocols. • 3DT2 CAIPIRINHA SPACE TSE and 2DT2 TSE had similar CNR of tissues.


Subject(s)
Imaging, Three-Dimensional , Soft Tissue Neoplasms , Humans , Imaging, Three-Dimensional/methods , Reproducibility of Results , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging , Soft Tissue Neoplasms/diagnostic imaging
3.
Invest Radiol ; 56(6): 357-368, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33350717

ABSTRACT

MATERIALS AND METHODS: This single-center study was approved by the institutional review board. Artificial intelligence-based FS MRI scans were created from non-FS images using a deep learning system with a modified convolutional neural network-based U-Net that used a training set of 25,920 images and validation set of 16,416 images. Three musculoskeletal radiologists reviewed 88 knee MR studies in 2 sessions, the original (proton density [PD] + FSPD) and the synthetic (PD + AFSMRI). Readers recorded AFSMRI quality (diagnostic/nondiagnostic) and the presence or absence of meniscal, ligament, and tendon tears; cartilage defects; and bone marrow abnormalities. Contrast-to-noise rate measurements were made among subcutaneous fat, fluid, bone marrow, cartilage, and muscle. The original MRI sequences were used as the reference standard to determine the diagnostic performance of AFSMRI (combined with the original PD sequence). This is a fully balanced study design, where all readers read all images the same number of times, which allowed the determination of the interchangeability of the original and synthetic protocols. Descriptive statistics, intermethod agreement, interobserver concordance, and interchangeability tests were applied. A P value less than 0.01 was considered statistically significant for the likelihood ratio testing, and P value less than 0.05 for all other statistical analyses. RESULTS: Artificial intelligence-based FS MRI quality was rated as diagnostic (98.9% [87/88] to 100% [88/88], all readers). Diagnostic performance (sensitivity/specificity) of the synthetic protocol was high, for tears of the menisci (91% [71/78], 86% [84/98]), cruciate ligaments (92% [12/13], 98% [160/163]), collateral ligaments (80% [16/20], 100% [156/156]), and tendons (90% [9/10], 100% [166/166]). For cartilage defects and bone marrow abnormalities, the synthetic protocol offered an overall sensitivity/specificity of 77% (170/221)/93% (287/307) and 76% (95/125)/90% (443/491), respectively. Intermethod agreement ranged from moderate to substantial for almost all evaluated structures (menisci, cruciate ligaments, collateral ligaments, and bone marrow abnormalities). No significant difference was observed between methods for all structural abnormalities by all readers (P > 0.05), except for cartilage assessment. Interobserver agreement ranged from moderate to substantial for almost all evaluated structures. Original and synthetic protocols were interchangeable for the diagnosis of all evaluated structures. There was no significant difference for the common exact match proportions for all combinations (P > 0.01). The conspicuity of all tissues assessed through contrast-to-noise rate was higher on AFSMRI than on original FSPD images (P < 0.05). CONCLUSIONS: Artificial intelligence-based FS MRI (3D AFSMRI) is feasible and offers a method for fast imaging, with similar detection rates for structural abnormalities of the knee, compared with original 3D MR sequences.


Subject(s)
Deep Learning , Knee Injuries , Artificial Intelligence , Humans , Imaging, Three-Dimensional , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...