Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Persoonia ; 34: 25-39, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26240443

ABSTRACT

The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense.

2.
Persoonia ; 31: 63-76, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24761035

ABSTRACT

Despite its association with important agricultural crops, Phytophthora clade 8b is a poorly studied group of species. The clade currently consists of three officially described species (Phytophthora porri, P. brassicae and P. primulae) that are host-specific pathogens of leek, cabbages and Primula spp., respectively. However, over the past few decades, several other clade 8b-like Phytophthoras have been found on a variety of different host plants that were all grown at low temperatures in winter seasons. In this study, a collection of 30 of these isolates was subjected to a phylogenetic study using two loci (the rDNA ITS region and the mitochondrial cox1 gene). This analysis revealed a clear clustering of isolates according to their host plants. To verify whether these isolates belong to separate species, a detailed morphological study was conducted. On the basis of genetic and morphological differences and host specificity, we now present the official description of three new species in clade 8b: Phytophthora cichorii sp. nov., P. dauci sp. nov. and P. lactucae sp. nov. Two other groups of isolates (Phytophthora taxon castitis and Phytophthora taxon parsley) might also represent new species but the data available at this time are insufficient for an official description. This brings Phytophthora clade 8b to a group of six species that are all host-specific, slow-growing and specifically infect herbaceous crops at low temperatures.

3.
Persoonia ; 25: 22-31, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21339964

ABSTRACT

Three new species of Pythium, namely, P. oopapillum, P. emineosum and P. camurandrum are presented in this paper based on morphological descriptions and molecular phylogenetic characterisation. These new species were isolated from various ecological regions in Canada. They have unique morphological features in the genus Pythium, and form distinct clades in maximum parsimony analyses, which are also supported by maximum likelihood phylogeny using general time reversible model (GTR), and Bayesian inference (BI) phylogeny using Markov Chain Monte Carlo (MCMC) analysis methods. A comparative study of the new species with closely related taxa, their clade positions, and morphological features are described in this paper.

4.
Phytopathology ; 97(5): 632-42, 2007 May.
Article in English | MEDLINE | ID: mdl-18943583

ABSTRACT

ABSTRACT Sudden oak death, caused by Phytophthora ramorum, is a severe disease that affects many species of trees and shrubs. This pathogen is spreading rapidly and quarantine measures are currently in place to prevent dissemination to areas that were previously free of the pathogen. Molecular assays that rapidly detect and identify P. ramorum frequently fail to reliably distinguish between P. ramorum and closely related species. To overcome this problem and to provide additional assays to increase confidence, internal transcribed spacer (ITS), beta-tubulin, and elicitin gene regions were sequenced and searched for polymorphisms in a collection of Phytophthora spp. Three different reporter technologies were compared: molecular beacons, TaqMan, and SYBR Green. The assays differentiated P. ramorum from the 65 species of Phytophthora tested. The assays developed were also used with DNA extracts from 48 infected and uninfected plant samples. All environmental samples from which P. ramorum was isolated by PARP-V8 were detected using all three real-time PCR assays. However, 24% of the samples yielded positive real-time PCR assays but no P. ramorum cultures, but sequence analysis of the coxI and II spacer region confirmed the presence of the pathogen in most samples. The assays based on detection of the ITS and elicitin regions using TaqMan tended to have lower cycle threshold values than those using beta-tubulin and seemed to be more sensitive.

5.
Appl Environ Microbiol ; 72(4): 2691-706, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16597974

ABSTRACT

A DNA array containing 172 oligonucleotides complementary to specific diagnostic regions of internal transcribed spacers (ITS) of more than 100 species was developed for identification and detection of Pythium species. All of the species studied, with the exception of Pythium ostracodes, exhibited a positive hybridization reaction with at least one corresponding species-specific oligonucleotide. Hybridization patterns were distinct for each species. The array hybridization patterns included cluster-specific oligonucleotides that facilitated the recognition of species, including new ones, belonging to groups such as those producing filamentous or globose sporangia. BLAST analyses against 500 publicly available Pythium sequences in GenBank confirmed that species-specific oligonucleotides were unique to all of the available strains of each species, of which there were numerous economically important ones. GenBank entries of newly described species that are not putative synonyms showed no homology to sequences of the spotted species-specific oligonucleotides, but most new species did match some of the cluster-specific oligonucleotides. Further verification of the specificity of the DNA array was done with 50 additional Pythium isolates obtained by soil dilution plating. The hybridization patterns obtained were consistent with the identification of these isolates based on morphology and ITS sequence analyses. In another blind test, total DNA of the same soil samples was amplified and hybridized on the array, and the results were compared to those of 130 Pythium isolates obtained by soil dilution plating and root baiting. The 13 species detected by the DNA array corresponded to the isolates obtained by a combination of soil dilution plating and baiting, except for one new species that was not represented on the array. We conclude that the reported DNA array is a reliable tool for identification and detection of the majority of Pythium species in environmental samples. Simultaneous detection and identification of multiple species of soilborne pathogens such as Pythium species could be a major step forward for epidemiological and ecological studies.


Subject(s)
Oligonucleotide Array Sequence Analysis/methods , Pythium/classification , Pythium/isolation & purification , Soil Microbiology , Oligonucleotides/genetics , Polymerase Chain Reaction/methods , Pythium/genetics , Species Specificity
6.
Int J Syst Evol Microbiol ; 55(Pt 3): 1353-1363, 2005 May.
Article in English | MEDLINE | ID: mdl-15879282

ABSTRACT

Physiological characters, mating compatibility, PCR-RAPD fingerprints, mol% G + C content, DNA-DNA relatedness, and large-subunit and internal transcribed spacer rRNA gene sequences of strains assigned to the genus Zygoascus were re-examined. On the basis of those data, and after phylogenetic analyses, an emendation of Zygoascus hellenicus (type material is a cross of CBS 6736(T) x CBS 5839(T)) is proposed, comprising two novel anamorphic varieties, Candida steatolytica var. steatolytica (CBS 6736(T)) and C. steatolytica var. inositophila (CBS 5839(T)). A novel teleomorphic species, Zygoascus meyerae sp. nov. (type material is a cross of CBS 4099(T) x CBS 7521(T)) is described, together with two novel anamorphic varieties corresponding to it, Candida hellenica var. hellenica (CBS 4099(T)) and C. hellenica var. acidophila (CBS 7115(T)).


Subject(s)
Saccharomycetales/classification , Base Composition , Candida/classification , DNA Fingerprinting , DNA, Fungal/chemistry , DNA, Fungal/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/isolation & purification , DNA, Ribosomal Spacer/genetics , Genes, Fungal , Genes, rRNA , Molecular Sequence Data , Mycological Typing Techniques , Nucleic Acid Hybridization , Phylogeny , RNA, Fungal/genetics , RNA, Ribosomal, 28S/genetics , Random Amplified Polymorphic DNA Technique , Saccharomycetales/cytology , Saccharomycetales/genetics , Saccharomycetales/physiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...