Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 19(38): 12668-72, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23873759

ABSTRACT

The potential energy surface of C6 Li6 was re-examined and a new non-symmetric global minimum was found. The new structure can be described as three C2 (2-) fragments strongly aggregated through lithium bridges. At high temperatures, fluxionality is perceived instead of dissociation. At 600 and 900 K, the BOMD simulations show that the lithium mobility is high, indicating that the cluster behaves in a liquid-like manner (BOMD=Born-Oppenheimer molecular dynamics).

2.
J Phys Condens Matter ; 25(2): 026001, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23178878

ABSTRACT

The evolution of the metamagnetic states in the ferromagnetic face centered cubic (fcc) Fe(1-x)Co(x) alloy as a function of Co concentration has been studied by means of first-principles calculations. The ground state properties were obtained using the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The alloying was modeled using the virtual crystal approximation and the magnetic states were obtained from the calculations of the total energy as a function of the spin moment, using the fixed spin moment method. For ferromagnetic fcc Fe, the binding-energy curve shows metamagnetic behavior, with two minima corresponding to a small-volume, low-spin (LS) state and a large-volume, high-spin (HS) state, which are separated by a small energy (E(LS) ≲ E(HS)). The evolution of the magnetic moment, the exchange integral (J), and the binding-energy curve is analyzed in the whole range of Co concentrations (x). The magnetic moment corresponding to the HS state decreases monotonically from 2.6 µ(B)/atom in fcc Fe to 1.7 µ(B)/atom in fcc Co. In contrast, the exchange integral for the HS state shows a maximum at around x = 0.45. The thermal dependence of the lattice parameter is evaluated with a method based on statistical mechanics using the binding-energy curve as an effective potential. It is observed that the behavior of the lattice parameter with temperature is tuned by Co doping, from negative thermal expansion in fcc Fe to positive thermal expansion in fcc Co, through the modification of the energetics of the metamagnetic states.


Subject(s)
Alloys/chemistry , Cobalt/chemistry , Iron/chemistry , Models, Chemical , Models, Molecular , Computer Simulation , Magnetic Fields , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...