Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Swiss Med Wkly ; 151: w20459, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33516162

ABSTRACT

BACKGROUND: SARS-CoV-2 is a respiratory virus. Transmission occurs by droplets, contact and aerosols. In medical settings, filtering facepiece (FFP) respirators are recommended for use by personnel exposed to aerosol-generating procedures. During the COVID-19 pandemic, the demand for FFP respirators exceeded their supply worldwide and low-quality products appeared on the market, potentially putting healthcare workers at risk. AIMS: To raise awareness about variations in quality of imported FFP respirators in Switzerland during the COVID-19 pandemic, to draw attention to the current directives regulating the market launch of FFP respirators in Switzerland, to provide practical support in identifying suspicious products or documents and, finally, to offer strategies aimed at reducing the distribution of low-quality FFP respirators in the future. METHODS: Three Swiss laboratories, Spiez Laboratory and Unisanté in partnership with TOXpro SA individually set up testing procedures to evaluate aerosol penetration and fit testing of FFP respirators imported into Switzerland during COVID-19 pandemic. Additionally, Spiez Laboratory visually inspected the products, examined the certification documents and crosschecked the product information with international databases. RESULTS: Between 31 March and 15 June 2020, 151 FFP respirators were analysed. The initial assessment performed before testing allowed a reduction of up to 35% in the number of FFP respirators sent to Spiez Laboratory for evaluation, for which product information found to be faulty. After filtration efficiency evaluation and fit testing, 52% and 60% of all products tested by Spiez Laboratory and Unisanté-TOXpro SA, respectively, did not meet the minimum performance requirements established independently by the three Swiss laboratories. CONCLUSION: The demand for FFP respirators exceeded the supply capacity from established suppliers of the Swiss market. New production and import channels emerged, as did the number of poor-quality FFP respirators. FFP respirators remaining in stocks should be checked for conformity before being used, or eliminated and replaced if quality does not meet standards.


Subject(s)
COVID-19/prevention & control , N95 Respirators/standards , COVID-19/transmission , Humans , In Vitro Techniques , N95 Respirators/supply & distribution , Product Labeling , Respiratory Protective Devices/standards , Respiratory Protective Devices/supply & distribution , SARS-CoV-2 , Switzerland
2.
Sci Technol Adv Mater ; 16(3): 034604, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27877791

ABSTRACT

The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET-ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing.

3.
J Vis Exp ; (85)2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24686898

ABSTRACT

In order to modify the surface tension of commercial available track-edged polymer membranes, a procedure of surface-initiated polymerization is presented. The polymerization from the membrane surface is induced by plasma treatment of the membrane, followed by reacting the membrane surface with a methanolic solution of 2-hydroxyethyl methacrylate (HEMA). Special attention is given to the process parameters for the plasma treatment prior to the polymerization on the surface. For example, the influence of the plasma-treatment on different types of membranes (e.g. polyester, polycarbonate, polyvinylidene fluoride) is studied. Furthermore, the time-dependent stability of the surface-grafted membranes is shown by contact angle measurements. When grafting poly(2-hydroxyethyl methacrylate) (PHEMA) in this way, the surface can be further modified by esterification of the alcohol moiety of the polymer with a carboxylic acid function of the desired substance. These reactions can therefore be used for the functionalization of the membrane surface. For example, the surface tension of the membrane can be changed or a desired functionality as the presented light-responsiveness can be inserted. This is demonstrated by reacting PHEMA with a carboxylic acid functionalized spirobenzopyran unit which leads to a light-responsive membrane. The choice of solvent plays a major role in the postmodification step and is discussed in more detail in this paper. The permeability measurements of such functionalized membranes are performed using a Franz cell with an external light source. By changing the wavelength of the light from the visible to the UV-range, a change of permeability of aqueous caffeine solutions is observed.


Subject(s)
Membranes, Artificial , Polymers/chemistry , Photochemical Processes
4.
ACS Appl Mater Interfaces ; 5(13): 5894-7, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23790045

ABSTRACT

Light-responsive membranes based on a porous polycarbonate (PC) matrix were developed by surface functionalization with spirobenzopyran (SP)-containing polymers. The surface modification was generated by plasma-induced surface graft polymerization. Mass transfer rates of caffeine through these membranes were found to be up to eight times higher under UV irradiation than at daylight.

SELECTION OF CITATIONS
SEARCH DETAIL
...