Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 406: 131063, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964512

ABSTRACT

Responsible use of natural resources and waste reduction are key concepts in bioeconomy. This study demonstrates that agro-food derived-biomasses from the Italian food industry, such as crude glycerol and cheese whey permeate (CWP), can be combined in a high-density fed-batch culture to produce a recombinant ß-galactosidase from Marinomonas sp. ef1 (M-ßGal). In a small-scale process (1.5 L) using 250 mL of crude glycerol and 300 mL of lactose-rich CWP, approximately 2000 kU of recombinant M-ßGal were successfully produced along with 30 g of galactose accumulated in the culture medium. The purified M-ßGal exhibited high hydrolysis efficiency in lactose-rich matrices, with hydrolysis yields of 82 % in skimmed milk at 4 °C and 94 % in CWP at 50 °C, highlighting its biotechnological potential. This approach demonstrates the effective use of crude glycerol and CWP in sustainable and cost-effective high-density Escherichia coli cultures, potentially applicable to recombinant production of various proteins.


Subject(s)
Biotechnology , Cheese , Escherichia coli , Glycerol , Whey , beta-Galactosidase , Glycerol/metabolism , beta-Galactosidase/metabolism , Escherichia coli/metabolism , Biotechnology/methods , Recombinant Proteins/metabolism , Hydrolysis , Batch Cell Culture Techniques , Lactose/metabolism
2.
Biotechnol Biofuels Bioprod ; 16(1): 30, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823649

ABSTRACT

BACKGROUND: Escherichia coli cells are the most frequently used hosts in recombinant protein production processes and mainly require molecules such as IPTG or pure lactose as inducers of heterologous expression. A possible way to reduce the production costs is to replace traditional inducers with waste materials such as cheese whey permeate (CWP). CWP is a secondary by-product generated from the production of the valuable whey proteins, which are obtained from ultrafiltration of cheese whey, a main by-product of the dairy industry, which is rich in lactose. RESULTS: The effects of CWP collected from an Italian plant were compared with those of traditional inducers on the production of two model proteins (i.e., green fluorescent protein and the toxic Q55 variant of ataxin-3), in E. coli BL21 (DE3) cells. It was found that the high lactose content of CWP (165 g/L) and the antioxidant properties of its micronutrients (vitamins, cofactors and osmolytes) sustain production yields similar to those obtained with traditional inducers, accompanied by the improvement of cell fitness. CONCLUSIONS: CWP has proven to be an effective and low-cost alternative inducer to produce recombinant proteins. Its use thus combines the advantage of exploiting a waste product with that of reducing the production costs of recombinant proteins.

3.
Biotechnol J ; 17(6): e2100712, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35188703

ABSTRACT

Broadly used in biocatalysis as acyl acceptors or (co)-solvents, short-chain alcohols often cause irreversible loss of enzyme activity. Understanding the mechanisms of inactivation is a necessary step toward the optimization of biocatalytic reactions and the design of enzyme-based sustainable processes. The functional and structural responses of an immobilized enzyme, Novozym 435 (N-435), exposed to methanol, ethanol, and tert-butanol, are explored in this work. N-435 consists of Candida antarctica lipase B (CALB) adsorbed on polymethacrylate beads and finds application in a variety of processes involving the presence of short-chain alcohols. The nature of the N-435 material required the development of an ad hoc method of structural analysis, based on Fourier transform infrared microspectroscopy, which was complemented by catalytic activity assays and by morphological observation by transmission electron microscopy. The inactivation of N-435 was found to be highly dependent on alcohol concentration and occurs through two different mechanisms. Short-chain alcohols induce conformational changes leading to CALB aggregation, which is only partially prevented by immobilization. Moreover, alcohol modifies the texture of the solid support promoting the enzyme release. Overall, knowledge of the molecular mechanisms underlying N-435 inactivation induced by short-chain alcohols promises to overcome the limitations that usually occur during industrial processes.


Subject(s)
Alcohols , Candida , Biocatalysis , Enzymes, Immobilized/metabolism , Fungal Proteins/metabolism , Lipase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...