Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Genom ; 3(4): 100277, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37082147

ABSTRACT

Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder characterized by deficits in social interactions and communication. Protein-altering variants in many genes have been shown to contribute to ASD; however, understanding the convergence across many genes remains a challenge. We demonstrate that coexpression patterns from 993 human postmortem brains are significantly correlated with the transcriptional consequences of CRISPR perturbations in human neurons. Across 71 ASD risk genes, there was significant tissue-specific convergence implicating synaptic pathways. Tissue-specific convergence was further demonstrated across schizophrenia and atrial fibrillation risk genes. The degree of ASD convergence was significantly correlated with ASD association from rare variation and differential expression in ASD brains. Positively convergent genes showed intolerance to functional mutations and had shorter coding lengths than known risk genes even after removing association with ASD. These results indicate that convergent coexpression can identify potentially novel genes that are unlikely to be discovered by sequencing studies.

2.
Mol Autism ; 11(1): 45, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32503625

ABSTRACT

BACKGROUND: MBD5, encoding the methyl-CpG-binding domain 5 protein, has been proposed as a necessary and sufficient driver of the 2q23.1 microdeletion syndrome. De novo missense and protein-truncating variants from exome sequencing studies have directly implicated MBD5 in the etiology of autism spectrum disorder (ASD) and related neurodevelopmental disorders (NDDs). However, little is known concerning the specific function(s) of MBD5. METHODS: To gain insight into the complex interactions associated with alteration of MBD5 in individuals with ASD and related NDDs, we explored the transcriptional landscape of MBD5 haploinsufficiency across multiple mouse brain regions of a heterozygous hypomorphic Mbd5+/GT mouse model, and compared these results to CRISPR-mediated mutations of MBD5 in human iPSC-derived neuronal models. RESULTS: Gene expression analyses across three brain regions from Mbd5+/GT mice showed subtle transcriptional changes, with cortex displaying the most widespread changes following Mbd5 reduction, indicating context-dependent effects. Comparison with MBD5 reduction in human neuronal cells reinforced the context-dependence of gene expression changes due to MBD5 deficiency. Gene co-expression network analyses revealed gene clusters that were associated with reduced MBD5 expression and enriched for terms related to ciliary function. LIMITATIONS: These analyses included a limited number of mouse brain regions and neuronal models, and the effects of the gene knockdown are subtle. As such, these results will not reflect the full extent of MBD5 disruption across human brain regions during early neurodevelopment in ASD, or capture the diverse spectrum of cell-type-specific changes associated with MBD5 alterations. CONCLUSIONS: Our study points to modest and context-dependent transcriptional consequences of Mbd5 disruption in the brain. It also suggests a possible link between MBD5 and perturbations in ciliary function, which is an established pathogenic mechanism in developmental disorders and syndromes.


Subject(s)
Brain/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mutation , Neurons/metabolism , Transcription, Genetic , Animals , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/metabolism , CRISPR-Cas Systems , Cell Differentiation/genetics , Cell Line , Disease Models, Animal , Gene Expression Regulation, Developmental , Gene Targeting , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Transgenic , Neurons/cytology
3.
Brain Behav ; 8(6): e00991, 2018 06.
Article in English | MEDLINE | ID: mdl-29785777

ABSTRACT

INTRODUCTION: Fragile X syndrome (FXS) is a common monogenetic cause of intellectual disability, autism spectrum features, and a broad range of other psychiatric and medical problems. FXS is caused by the lack of the fragile X mental retardation protein (FMRP), a translational regulator of specific mRNAs at the postsynaptic compartment. The absence of FMRP leads to aberrant synaptic plasticity, which is believed to be caused by an imbalance in excitatory and inhibitory network functioning of the synapse. Evidence from studies in mice demonstrates that GABA, the major inhibitory neurotransmitter in the brain, and its receptors, is involved in the pathogenesis of FXS. Moreover, several FXS phenotypes, including social behavior deficits, could be corrected in Fmr1 KO mice after acute treatment with GABAB agonists. METHODS: As FXS would probably require a lifelong treatment, we investigated the effect of chronic treatment with the GABAB agonist baclofen on social behavior in Fmr1 KO mice on two behavioral paradigms for social behavior: the automated tube test and the three-chamber sociability test. RESULTS: Unexpectedly, chronic baclofen treatment resulted in worsening of the FXS phenotypes in these behavior tests. Strikingly, baclofen treatment also affected wild-type animals in both behavioral tests, inducing a phenotype similar to that of untreated Fmr1 KO mice. CONCLUSION: Altogether, the disappointing results of recent clinical trials with the R-baclofen enantiomer arbaclofen and our current results indicate that baclofen should be reconsidered and further evaluated before its application in targeted treatment for FXS.


Subject(s)
Baclofen/pharmacology , Fragile X Mental Retardation Protein/metabolism , GABA-B Receptor Agonists/pharmacology , Social Behavior , Animals , Disease Models, Animal , Fragile X Syndrome/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropsychological Tests , RNA, Messenger/metabolism , Synapses/drug effects
4.
EMBO Mol Med ; 7(4): 423-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25693964

ABSTRACT

Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5' untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes.


Subject(s)
Cell Nucleus , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mutation , Nuclear Localization Signals , Trinucleotide Repeat Expansion , Animals , Cell Line, Transformed , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , Drosophila melanogaster , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Humans , Male , Mice , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Protein Structure, Tertiary , Protein Transport/genetics
5.
Stem Cell Reports ; 3(4): 548-55, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25358783

ABSTRACT

Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.


Subject(s)
DNA Methylation , Fibroblasts/metabolism , Fragile X Mental Retardation Protein/genetics , Gene Silencing , Induced Pluripotent Stem Cells/metabolism , Mutation , Adolescent , Animals , Case-Control Studies , Cell Line , Cellular Reprogramming , Child , Child, Preschool , Female , Fibroblasts/cytology , Fragile X Mental Retardation Protein/metabolism , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Male , Mice , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Neurosci Biobehav Rev ; 46 Pt 2: 256-69, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24184744

ABSTRACT

Fragile X syndrome (FXS) occurs in less than 10% of the intellectually disabled (ID) population. The cause of FXS is a CGG trinucleotide repeat longer than 200 CGG units within the first exon of the FMR1 gene, which leads to hypermethylation and consequently silencing of the FMR1 gene. The lack of FMR1's gene product, the fragile X mental retardation protein (FMRP) in neurons is the cause of the ID in patients with FXS. FMRP plays an important role in local protein synthesis at the synapse including modulation of synaptic plasticity. The advancing knowledge about the cellular function of FMRP has led to the identification of translational endpoints for future therapeutic intervention strategies. This review highlights the challenging routes to the identification of reliable outcome measures in preclinical studies using both cellular models and Fmr1 knockout mice. Finally, clinical studies carried out to correct intellectual and behavioral deficits in patients with FXS, using a variety of existing and new drugs, are discussed.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Molecular Targeted Therapy , Neuronal Plasticity/genetics , Animals , Biomarkers/metabolism , Disease Models, Animal , Fragile X Syndrome/diagnosis , Humans , Mice, Knockout , Models, Neurological , Neurons/metabolism , Nootropic Agents/therapeutic use , Outcome Assessment, Health Care
7.
Psychopharmacology (Berl) ; 231(6): 1227-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23254376

ABSTRACT

Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The disease is a result of lack of expression of the fragile X mental retardation protein. Brain tissues of patients with FXS and mice with FMRP deficiency have shown an abnormal dendritic spine phenotype. We investigated the dendritic spine length and density of hippocampal CA1 pyramidal neurons in 2-, 10-, and 25-week-old Fmr1 knockout (KO). Next, we studied the effects of long-term treatment with an mGluR5 antagonist, AFQ056/Mavoglurant, on the spine phenotype in adult Fmr1 KO mice. We observed alterations in the spine phenotype during development, with a decreased spine length in 2-week-old Fmr1 KO mice compared with age-match wild-type littermates, but with increased spine length in Fmr1 KO mice compared with 10- and 25-week-old wild-type controls. No difference was found in spine density at any age. We report a rescue of the abnormal spine length in adult Fmr1 KO mice after a long-term treatment with AFQ056/Mavoglurant. This finding suggests that long-term treatment at later stage is sufficient to reverse the structural spine abnormalities and represents a starting point for future studies aimed at improving treatments for FXS.


Subject(s)
CA1 Region, Hippocampal/drug effects , Dendritic Spines/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Fragile X Syndrome/drug therapy , Indoles/pharmacology , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Animals , CA1 Region, Hippocampal/growth & development , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Dendritic Spines/metabolism , Dendritic Spines/pathology , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Male , Mice , Mice, Knockout , Microscopy, Confocal , Phenotype , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Receptor, Metabotropic Glutamate 5/metabolism
8.
Toxicol Sci ; 133(1): 112-24, 2013 May.
Article in English | MEDLINE | ID: mdl-23457123

ABSTRACT

Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [(18)F]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [(18)F]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase-associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests.


Subject(s)
Brain/drug effects , Environmental Pollutants/toxicity , Maternal Exposure/adverse effects , Methylmercury Compounds/toxicity , Neurogenesis/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Animals , Brain/diagnostic imaging , Brain/growth & development , Brain/metabolism , Female , Fluorodeoxyglucose F18 , Gene Expression Regulation, Developmental/drug effects , Genome-Wide Association Study , Gestational Age , Lactation , Male , Positron-Emission Tomography , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Wistar , Transcriptome/drug effects
9.
Behav Brain Res ; 239: 72-9, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23142366

ABSTRACT

Fragile X syndrome is caused by lack of FMR1 protein (FMRP) leading to severe symptoms, including intellectual disability, hyperactivity and autistic-like behaviour. FMRP is an RNA binding protein involved in the regulation of translation of specific target mRNAs upon stimulation of metabotropic glutamate receptor 5 (mGluR5) at the synapse. The absence of FMRP leads to enhanced activity of mGluR5 signal transduction pathways. Many conflicting results have been reported regarding social behaviour deficits in Fmr1 knockout mice, and little is known about the involvement of mGluR5 pathways on social behaviour. In this study, a three-chambered task was used to determine sociability and preference for social novelty in Fmr1 knockout mice. Disruption of Fmr1 functioning resulted in enhanced interaction with stranger mouse during sociability while no significant changes were observed during preference for social novelty assay. Chronic administration of a specific mGluR5 antagonist, AFQ056/Mavoglurant, was able to restore sociability behaviour of Fmr1 knockout mice to levels of wild type littermates. These results support the importance of mGluR5 signalling pathways on social interaction behaviour and that AFQ056/Mavoglurant might be useful as potential therapeutic intervention to rescue various behavioural aspects of the fragile X phenotype.


Subject(s)
Fragile X Mental Retardation Protein/physiology , Fragile X Syndrome/drug therapy , Indoles/pharmacology , Indoles/therapeutic use , Receptors, Metabotropic Glutamate/physiology , Social Behavior , Animals , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...