Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J Chem Theory Comput ; 20(10): 4076-4087, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743033

ABSTRACT

Achieving a balance between computational speed, prediction accuracy, and universal applicability in molecular simulations has been a persistent challenge. This paper presents substantial advancements in TorchMD-Net software, a pivotal step forward in the shift from conventional force fields to neural network-based potentials. The evolution of TorchMD-Net into a more comprehensive and versatile framework is highlighted, incorporating cutting-edge architectures such as TensorNet. This transformation is achieved through a modular design approach, encouraging customized applications within the scientific community. The most notable enhancement is a significant improvement in computational efficiency, achieving a very remarkable acceleration in the computation of energy and forces for TensorNet models, with performance gains ranging from 2× to 10× over previous, nonoptimized, iterations. Other enhancements include highly optimized neighbor search algorithms that support periodic boundary conditions and smooth integration with existing molecular dynamics frameworks. Additionally, the updated version introduces the capability to integrate physical priors, further enriching its application spectrum and utility in research. The software is available at https://github.com/torchmd/torchmd-net.

2.
Elife ; 132024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655849

ABSTRACT

Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.


PURA syndrome is a neurodevelopmental disorder that affects about 650 patients worldwide, resulting in a range of symptoms including neurodevelopmental delays, intellectual disability, muscle weakness, seizures, and eating difficulties. The condition is caused by a mutated gene that codes for a protein called PURA. PURA binds RNA ­ the molecule that carries genetic information so it can be translated into proteins ­ and has roles in regulating the production of new proteins. Contrary to other conditions that result from mutations in a single gene, PURA syndrome patients show 'high penetrance', meaning almost every reported mutation in the gene leads to symptoms. Proske, Janowski et al. wanted to understand the molecular basis for this high penetrance. To find out more, the researchers first examined how patient mutations affected the location of the PURA in the cell, using human cells grown in the laboratory. Normally, PURA travels to P-bodies, which are groupings of RNA and proteins involved in regulating which genes get translated into proteins. The researchers found that in cells carrying PURA syndrome mutations, PURA failed to move adequately to P-bodies. To find out how this 'mislocalization' might happen, Proske, Janowski et al. tested how different mutations affected the three-dimensional folding of PURA. These analyses showed that the mutations impair the protein's folding and thereby disrupt PURA's ability to bind RNA, which may explain why mutant PURA cannot localize correctly. Proske, Janowski et al. describe the molecular abnormalities of PURA underlying this disorder and show how molecular analysis of patient mutations can reveal the mechanisms of a disease at the cell level. The results show that the impact of mutations on the structural integrity of the protein, which affects its ability to bind RNA, are likely key to the symptoms of the syndrome. Additionally, their approach used establishes a way to predict and test mutations that will cause PURA syndrome. This may help to develop diagnostic tools for this condition.


Subject(s)
Neurodevelopmental Disorders , Processing Bodies , Humans , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Processing Bodies/metabolism , Processing Bodies/pathology , Stress Granules/metabolism , Crystallography, X-Ray , Dimerization , Protein Domains , Circular Dichroism , Recombinant Proteins , Protein Folding , Penetrance , Amino Acid Substitution , Point Mutation , HeLa Cells
3.
ArXiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38463504

ABSTRACT

Achieving a balance between computational speed, prediction accuracy, and universal applicability in molecular simulations has been a persistent challenge. This paper presents substantial advancements in the TorchMD-Net software, a pivotal step forward in the shift from conventional force fields to neural network-based potentials. The evolution of TorchMD-Net into a more comprehensive and versatile framework is highlighted, incorporating cutting-edge architectures such as TensorNet. This transformation is achieved through a modular design approach, encouraging customized applications within the scientific community. The most notable enhancement is a significant improvement in computational efficiency, achieving a very remarkable acceleration in the computation of energy and forces for Tensor-Net models, with performance gains ranging from 2x to 10x over previous, non-optimized, iterations. Other enhancements include highly optimized neighbor search algorithms that support periodic boundary conditions and smooth integration with existing molecular dynamics frameworks. Additionally, the updated version introduces the capability to integrate physical priors, further enriching its application spectrum and utility in research. The software is available at https://github.com/torchmd/torchmd-net.

4.
J Chem Inf Model ; 64(5): 1481-1485, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38376463

ABSTRACT

This letter gives results on improving protein-ligand binding affinity predictions based on molecular dynamics simulations using machine learning potentials with a hybrid neural network potential and molecular mechanics methodology (NNP/MM). We compute relative binding free energies with the Alchemical Transfer Method and validate its performance against established benchmarks and find significant enhancements compared with conventional MM force fields like GAFF2.


Subject(s)
Molecular Dynamics Simulation , Proteins , Ligands , Thermodynamics , Proteins/chemistry , Protein Binding , Neural Networks, Computer
5.
ArXiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38351937

ABSTRACT

This letter gives results on improving protein-ligand binding affinity predictions based on molecular dynamics simulations using machine learning potentials with a hybrid neural network potential and molecular mechanics methodology (NNP/MM). We compute relative binding free energies (RBFE) with the Alchemical Transfer Method (ATM) and validate its performance against established benchmarks and find significant enhancements compared to conventional MM force fields like GAFF2.

6.
J Chem Inf Model ; 64(3): 584-589, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38266194

ABSTRACT

PlayMolecule Viewer is a web-based data visualization toolkit designed to streamline the exploration of data resulting from structural bioinformatics or computer-aided drug design efforts. By harnessing state-of-the-art web technologies such as WebAssembly, PlayMolecule Viewer integrates powerful Python libraries directly within the browser environment, which enhances its capabilities to manage multiple types of molecular data. With its intuitive interface, it allows users to easily upload, visualize, select, and manipulate molecular structures and associated data. The toolkit supports a wide range of common structural file formats and offers a variety of molecular representations to cater to different visualization needs. PlayMolecule Viewer is freely accessible at open.playmolecule.org, ensuring accessibility and availability to the scientific community and beyond.


Subject(s)
Computational Biology , Software , Molecular Structure
7.
J Phys Chem B ; 128(1): 109-116, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38154096

ABSTRACT

Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbitrary PyTorch models can be added to a simulation and used to compute forces and energy. A higher-level interface allows users to easily model their molecules of interest with general purpose, pretrained potential functions. A collection of optimized CUDA kernels and custom PyTorch operations greatly improves the speed of simulations. We demonstrate these features in simulations of cyclin-dependent kinase 8 (CDK8) and the green fluorescent protein chromophore in water. Taken together, these features make it practical to use machine learning to improve the accuracy of simulations with only a modest increase in cost.


Subject(s)
Molecular Dynamics Simulation , Water , Machine Learning
8.
J Chem Theory Comput ; 19(21): 7518-7526, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37874270

ABSTRACT

Developing accurate and efficient coarse-grained representations of proteins is crucial for understanding their folding, function, and interactions over extended time scales. Our methodology involves simulating proteins with molecular dynamics and utilizing the resulting trajectories to train a neural network potential through differentiable trajectory reweighting. Remarkably, this method requires only the native conformation of proteins, eliminating the need for labeled data derived from extensive simulations or memory-intensive end-to-end differentiable simulations. Once trained, the model can be employed to run parallel molecular dynamics simulations and sample folding events for proteins both within and beyond the training distribution, showcasing its extrapolation capabilities. By applying Markov state models, native-like conformations of the simulated proteins can be predicted from the coarse-grained simulations. Owing to its theoretical transferability and ability to use solely experimental static structures as training data, we anticipate that this approach will prove advantageous for developing new protein force fields and further advancing the study of protein dynamics, folding, and interactions.


Subject(s)
Molecular Dynamics Simulation , Proteins , Proteins/chemistry , Protein Conformation , Machine Learning , Protein Folding
9.
Chem Res Toxicol ; 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37690056

ABSTRACT

Predictive modeling of toxicity is a crucial step in the drug discovery pipeline. It can help filter out molecules with a high probability of failing in the early stages of de novo drug design. Thus, several machine learning (ML) models have been developed to predict the toxicity of molecules by combining classical ML techniques or deep neural networks with well-known molecular representations such as fingerprints or 2D graphs. But the more natural, accurate representation of molecules is expected to be defined in physical 3D space like in ab initio methods. Recent studies successfully used equivariant graph neural networks (EGNNs) for representation learning based on 3D structures to predict quantum-mechanical properties of molecules. Inspired by this, we investigated the performance of EGNNs to construct reliable ML models for toxicity prediction. We used the equivariant transformer (ET) model in TorchMD-NET for this. Eleven toxicity data sets taken from MoleculeNet, TDCommons, and ToxBenchmark have been considered to evaluate the capability of ET for toxicity prediction. Our results show that ET adequately learns 3D representations of molecules that can successfully correlate with toxicity activity, achieving good accuracies on most data sets comparable to state-of-the-art models. We also test a physicochemical property, namely, the total energy of a molecule, to inform the toxicity prediction with a physical prior. However, our work suggests that these two properties can not be related. We also provide an attention weight analysis for helping to understand the toxicity prediction in 3D space and thus increase the explainability of the ML model. In summary, our findings offer promising insights considering 3D geometry information via EGNNs and provide a straightforward way to integrate molecular conformers into ML-based pipelines for predicting and investigating toxicity prediction in physical space. We expect that in the future, especially for larger, more diverse data sets, EGNNs will be an essential tool in this domain.

10.
Nat Commun ; 14(1): 5739, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37714883

ABSTRACT

A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.


Subject(s)
Machine Learning , Physics , Thermodynamics , Ataxia Telangiectasia Mutated Proteins , Molecular Dynamics Simulation
11.
J Chem Inf Model ; 63(18): 5701-5708, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37694852

ABSTRACT

Machine learning potentials have emerged as a means to enhance the accuracy of biomolecular simulations. However, their application is constrained by the significant computational cost arising from the vast number of parameters compared with traditional molecular mechanics. To tackle this issue, we introduce an optimized implementation of the hybrid method (NNP/MM), which combines a neural network potential (NNP) and molecular mechanics (MM). This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency. By conducting molecular dynamics (MD) simulations on various protein-ligand complexes and metadynamics (MTD) simulations on a ligand, we showcase the capabilities of our implementation of NNP/MM. It has enabled us to increase the simulation speed by ∼5 times and achieve a combined sampling of 1 µs for each complex, marking the longest simulations ever reported for this class of simulations.


Subject(s)
Molecular Dynamics Simulation , Neural Networks, Computer , Ligands , Machine Learning
12.
J Chem Theory Comput ; 19(13): 3817-3824, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37341654

ABSTRACT

Intrinsically disordered proteins participate in many biological processes by folding upon binding to other proteins. However, coupled folding and binding processes are not well understood from an atomistic point of view. One of the main questions is whether folding occurs prior to or after binding. Here we use a novel, unbiased, high-throughput adaptive sampling approach to reconstruct the binding and folding between the disordered transactivation domain of c-Myb and the KIX domain of the CREB-binding protein. The reconstructed long-term dynamical process highlights the binding of a short stretch of amino acids on c-Myb as a folded α-helix. Leucine residues, especially Leu298-Leu302, establish initial native contacts that prime the binding and folding of the rest of the peptide, with a mixture of conformational selection on the N-terminal region with an induced fit of the C-terminal.


Subject(s)
Education, Distance , Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Protein Folding , Protein Binding
13.
J Chem Inf Model ; 63(8): 2438-2444, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37042797

ABSTRACT

The accurate prediction of protein-ligand binding affinities is crucial for drug discovery. Alchemical free energy calculations have become a popular tool for this purpose. However, the accuracy and reliability of these methods can vary depending on the methodology. In this study, we evaluate the performance of a relative binding free energy protocol based on the alchemical transfer method (ATM), a novel approach based on a coordinate transformation that swaps the positions of two ligands. The results show that ATM matches the performance of more complex free energy perturbation (FEP) methods in terms of Pearson correlation but with marginally higher mean absolute errors. This study shows that the ATM method is competitive compared to more traditional methods in speed and accuracy and offers the advantage of being applicable with any potential energy function.


Subject(s)
Molecular Dynamics Simulation , Thermodynamics , Reproducibility of Results , Entropy , Protein Binding , Ligands
14.
Sci Data ; 10(1): 11, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599873

ABSTRACT

Machine learning potentials are an important tool for molecular simulation, but their development is held back by a shortage of high quality datasets to train them on. We describe the SPICE dataset, a new quantum chemistry dataset for training potentials relevant to simulating drug-like small molecules interacting with proteins. It contains over 1.1 million conformations for a diverse set of small molecules, dimers, dipeptides, and solvated amino acids. It includes 15 elements, charged and uncharged molecules, and a wide range of covalent and non-covalent interactions. It provides both forces and energies calculated at the ωB97M-D3(BJ)/def2-TZVPPD level of theory, along with other useful quantities such as multipole moments and bond orders. We train a set of machine learning potentials on it and demonstrate that they can achieve chemical accuracy across a broad region of chemical space. It can serve as a valuable resource for the creation of transferable, ready to use potential functions for use in molecular simulations.

15.
J Chem Inf Model ; 62(2): 225-231, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34978201

ABSTRACT

Deep learning has been successfully applied to structure-based protein-ligand affinity prediction, yet the black box nature of these models raises some questions. In a previous study, we presented KDEEP, a convolutional neural network that predicted the binding affinity of a given protein-ligand complex while reaching state-of-the-art performance. However, it was unclear what this model was learning. In this work, we present a new application to visualize the contribution of each input atom to the prediction made by the convolutional neural network, aiding in the interpretability of such predictions. The results suggest that KDEEP is able to learn meaningful chemistry signals from the data, but it has also exposed the inaccuracies of the current model, serving as a guideline for further optimization of our prediction tools.


Subject(s)
Neural Networks, Computer , Proteins , Ligands , Proteins/chemistry
16.
Front Microbiol ; 12: 720991, 2021.
Article in English | MEDLINE | ID: mdl-34621251

ABSTRACT

Class A ß-lactamases are known for being able to rapidly gain broad spectrum catalytic efficiency against most ß-lactamase inhibitor combinations as a result of elusively minor point mutations. The evolution in class A ß-lactamases occurs through optimisation of their dynamic phenotypes at different timescales. At long-timescales, certain conformations are more catalytically permissive than others while at the short timescales, fine-grained optimisation of free energy barriers can improve efficiency in ligand processing by the active site. Free energy barriers, which define all coordinated movements, depend on the flexibility of the secondary structural elements. The most highly conserved residues in class A ß-lactamases are hydrophobic nodes that stabilize the core. To assess how the stable hydrophobic core is linked to the structural dynamics of the active site, we carried out adaptively sampled molecular dynamics (MD) simulations in four representative class A ß-lactamases (KPC-2, SME-1, TEM-1, and SHV-1). Using Markov State Models (MSM) and unsupervised deep learning, we show that the dynamics of the hydrophobic nodes is used as a metastable relay of kinetic information within the core and is coupled with the catalytically permissive conformation of the active site environment. Our results collectively demonstrate that the class A enzymes described here, share several important dynamic similarities and the hydrophobic nodes comprise of an informative set of dynamic variables in representative class A ß-lactamases.

17.
J Chem Theory Comput ; 17(4): 2355-2363, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33729795

ABSTRACT

Molecular dynamics simulations provide a mechanistic description of molecules by relying on empirical potentials. The quality and transferability of such potentials can be improved leveraging data-driven models derived with machine learning approaches. Here, we present TorchMD, a framework for molecular simulations with mixed classical and machine learning potentials. All force computations including bond, angle, dihedral, Lennard-Jones, and Coulomb interactions are expressed as PyTorch arrays and operations. Moreover, TorchMD enables learning and simulating neural network potentials. We validate it using standard Amber all-atom simulations, learning an ab initio potential, performing an end-to-end training, and finally learning and simulating a coarse-grained model for protein folding. We believe that TorchMD provides a useful tool set to support molecular simulations of machine learning potentials. Code and data are freely available at github.com/torchmd.

18.
J Chem Inf Model ; 60(12): 5635-5636, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33378853
19.
J Chem Phys ; 153(19): 194101, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33218238

ABSTRACT

Coarse graining enables the investigation of molecular dynamics for larger systems and at longer timescales than is possible at an atomic resolution. However, a coarse graining model must be formulated such that the conclusions we draw from it are consistent with the conclusions we would draw from a model at a finer level of detail. It has been proved that a force matching scheme defines a thermodynamically consistent coarse-grained model for an atomistic system in the variational limit. Wang et al. [ACS Cent. Sci. 5, 755 (2019)] demonstrated that the existence of such a variational limit enables the use of a supervised machine learning framework to generate a coarse-grained force field, which can then be used for simulation in the coarse-grained space. Their framework, however, requires the manual input of molecular features to machine learn the force field. In the present contribution, we build upon the advance of Wang et al. and introduce a hybrid architecture for the machine learning of coarse-grained force fields that learn their own features via a subnetwork that leverages continuous filter convolutions on a graph neural network architecture. We demonstrate that this framework succeeds at reproducing the thermodynamics for small biomolecular systems. Since the learned molecular representations are inherently transferable, the architecture presented here sets the stage for the development of machine-learned, coarse-grained force fields that are transferable across molecular systems.

20.
Sci Rep ; 10(1): 16374, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32989240

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...