Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 236: 124035, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36921831

ABSTRACT

To simultaneously form films while synthesizing solvent-free and catalyst-free bio-based polyurethanes, hexamethylene diisocyanate trimer was selected as an isocyanate group source to produce a low-viscosity reaction medium for dispersing high contents of microcrystalline cellulose (MCC, polyol) and cellulose nanocrystals (CNC). Castor oil was used as an additional polyol source. Up to 80 % of the MCC was dispersed, producing a film exhibiting the highest Tg (72 °C), tensile strength (18 MPa), and Young's modulus (522.4 MPa). 12.5 % (30 % MCC) and 7.5 % (50 % MCC) of CNC dispersed in the reaction medium formed films stiffer than their counterparts. All the films exhibited transparency and high crystallinity. The contact angle/zeta potential (ζ) indicated hydrophobic film surfaces. At pH 7.4, ζ suggested that the films interacted with physiological fluids favorably. The films were non-cytotoxic, and the composites exhibited cell growth compared with the control. The reported results, as far as it is known, are unprecedented.


Subject(s)
Nanoparticles , Polyurethanes , Polyurethanes/chemistry , Isocyanates/chemistry , Viscosity , Cellulose/chemistry , Nanoparticles/chemistry
2.
J Biophotonics ; 14(1): e202000128, 2021 01.
Article in English | MEDLINE | ID: mdl-32981235

ABSTRACT

One important limitation of topical photodynamic therapy (PDT) is the limited tissue penetration of precursors. Microneedles (MNs) are minimally invasive devices used to promote intradermal drug delivery. Dissolving MNs contain drug-associated to polymer blends, dissolving after insertion into skin, allowing drug release. This study comprises development and characterization of a pyramidal model of dissolving MNs (500 µm) prepared with 5% wt/wt aminolevulinic acid and 20% wt/wt Gantrez AN-139 in aqueous blend. Protoporphyrin IX formation and distribution were evaluated in tumor mice model by using fluorescence widefield imaging, spectroscopy, and confocal microscopy. MNs demonstrated excellent mechanical resistance penetrating about 250 µm with minor size alteration in vitro, and fluorescence intensity was 5-times higher at 0.5 mm on average compared to cream in vivo (being 10 ± 5 a.u. for MNs and 2.4 ± 0.8 a.u. for cream). Dissolving MNs have overcome topical cream application, being extremely promising especially for thicker skin lesions treatment using PDT.


Subject(s)
Aminolevulinic Acid , Photochemotherapy , Administration, Cutaneous , Aminolevulinic Acid/pharmacology , Animals , Mice , Photosensitizing Agents/pharmacology , Protoporphyrins , Skin
3.
J Photochem Photobiol B ; 182: 85-91, 2018 May.
Article in English | MEDLINE | ID: mdl-29627515

ABSTRACT

Photodynamic therapy (PDT) is a technique with well-established principles that often demands repeated applications for sequential elimination of tumor cells. An important question concerns the way surviving cells from a treatment behave in the subsequent one. Threshold dose is a core concept in PDT dosimetry, as the minimum amount of energy to be delivered for cell destruction via PDT. Concepts of threshold distribution have shown to be an important tool for PDT results analysis in vitro. In this study, we used some of these concepts for demonstrating subsequent treatments with partial elimination of cells modify the distribution, which represents an increased resistance of the cells to the photodynamic action. HepG2 and HepaRG were used as models of tumor and normal liver cells and a protocol to induce resistance, consisted of repeated PDT sessions using Photogem® as a photosensitizer, was applied to the tumor ones. The response of these cells to PDT was assessed using a standard viability assay and the dose response curves were used for deriving the threshold distributions. The changes in the distribution revealed that the resistance protocol effectively eliminated the most sensitive cells. Nevertheless, HepaRG cell line was the most resistant one among the cells analyzed, which indicates a specificity in clinical applications that enables the use of high doses and drug concentrations with minimal damage to the surrounding normal tissue.


Subject(s)
Lasers , Photochemotherapy , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Drug Resistance , Hep G2 Cells , Humans , Microscopy, Confocal , Photosensitizing Agents/pharmacology
4.
J Photochem Photobiol B ; 162: 168-175, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27371916

ABSTRACT

The concept of threshold in photodynamic action on cells or microorganisms is well observed in experiments but not fully explored on in vitro experiments. The intercomparison between light and used photosensitizer among many experiments is also poorly evaluated. In this report, we present an analytical model that allows extracting from the survival rate experiments the data of the threshold dose distribution, ie, the distribution of energies and photosensitizer concentration necessary to produce death of cells. Then, we use this model to investigate photodynamic therapy (PDT) data previously published in literature. The concept of threshold dose distribution instead of "single value of threshold" is a rich concept for the comparison of photodynamic action in different situations, allowing analyses of its efficiency as well as determination of optimized conditions for PDT. We observed that, in general, as it becomes more difficult to kill a population, the distribution tends to broaden, which means it presents a large spectrum of threshold values within the same cell type population. From the distribution parameters (center peak and full width), we also observed a clear distinction among cell types regarding their response to PDT that can be quantified. Comparing data obtained from the same cell line and used photosensitizer (PS), where the only distinct condition was the light source's wavelength, we found that the differences on the distribution parameters were comparable to the differences on the PS absorption. At last, we observed evidence that the threshold dose distribution matches the curve of apoptotic activity for some PSs.


Subject(s)
Photochemotherapy , Apoptosis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Humans , In Vitro Techniques , Photosensitizing Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...