Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 636: 1553-1564, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29913616

ABSTRACT

Abamectin (ABA) toxicity in fish, amphibian and mammals was already proven, but its effect on birds is almost unknown. Thus, the aim of our study is to assess the impact of exposure to water with ABA for 40 days at predicted environmentally relevant concentrations on the behavior of female Japanese quails (Coturnix coturnix japonica). The three following experimental groups (n = 10 each) were set: "control", quails exposed to drinking water, without ABA, "EC1x" and "EC1000x" (0.31 mg a.i./L and 310.0 a.i./L, respectively; via commercial formulation Kraft® 36EC). The open field test showed anxiolytic response in birds exposed to ABA. These birds did not show locomotor changes or aggressive behavior in the aggressiveness test. Quails exposed to the pesticide did not react to the introduction of an object in the experimental box during the object recognition test, and it suggested perception deficit due to ABA. Moreover, these birds did not recognize the cat (Felix catus) and the vocalization of a hawk (Rupornis magnirostris) as potential predatory threats. These responses also suggest anti-predatory behavior deficit due to the pesticide. Thus, our study is pioneer in showing that water with ABA, at tested concentrations, influences the behavior of C. coturnix japonica, as well as in highlighting the potential impacts of this pesticide on this group of birds.


Subject(s)
Behavior, Animal/drug effects , Coturnix/physiology , Ivermectin/analogs & derivatives , Pesticides/toxicity , Animals , Cats , Female , Ivermectin/toxicity
2.
Sci Total Environ ; 628-629: 186-197, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29432930

ABSTRACT

Previous studies have individually confirmed the toxic effects from different pollutants on mammals. However, effects resulting from the exposure of these animals to multi-pollutant mixes have not been studied so far. Thus, the aim of the current study is to assess the effect from the chronic exposure (105days) of C57Bl/6J mice to a mix of pollutants on their response to potential predators. In order to do so, the following groups were formed: "control", "Mix 1× [compounds from 15 pollutants identified in surface waters at environmentally relevant concentration (ERC)]", "Mix 10×" and "Mix 25×" (concentrations 10 and 25 times higher than the ERC). From the 100th experimental day on, the animals were subjected to tests in order to investigate whether they showed locomotor, visual, olfactory and auditory changes, since these abilities are essential to their anti-predatory behavior. Next, the animals' behavior towards potential predators (Felis catus and Pantherophis guttatus) was assessed. The herein collected data did not show defensive response from any of the experimental groups to the predatory stimulus provided by P. guttatus. However, the control animals, only, presented anti-predatory behavior when F. catus was introduced in the apparatus, fact that suggests defensive response deficit resulting from the treatments. Thus, the current study is pioneer in showing that the chronic intake of water containing a mix of pollutants (even at low concentrations) leads to behavioral disorders able to affect the survival and population dynamics of mammalian species at ecological level.


Subject(s)
Water Pollutants, Chemical/toxicity , Animals , Cats , Male , Mice , Mice, Inbred C57BL , Predatory Behavior , Toxicity Tests
3.
Environ Sci Pollut Res Int ; 25(3): 2450-2456, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29127630

ABSTRACT

Although previous studies have already confirmed the toxicological potential of abamectin (ABA) in different experimental models (from invertebrates to vertebrates), almost nothing is known about the impacts the exposure to this pesticide can cause on birds. Thus, the aim of our study is to investigate the cytotoxic effects on the erythrocytes of female Japanese quails (Coturnix japonica) exposed to low abamectin concentrations. In order to do so, three experimental groups were proposed: "control," composed of quails exposed to abamectin-free drinking water; "ABA 1% median lethal dose (LD50)," comprising birds exposed to water containing 15.5 mg a.i./L of abamectin (via commercial formulation Kraft® 36EC), and "ABA 10% LD50," composed by birds exposed to water containing 155.0 mg a.i./L of abamectin. The micronucleus test and the tests applied to other nuclear abnormalities in the peripheral blood of birds were conducted 40 days after exposure. Our study revealed significant physical abnormalities in nuclear shapes (erythrocytes with asymmetric constriction nuclei, notched nuclei, indented and moved nucleus) of those birds exposed to higher abamectin levels. When all nuclear abnormalities were tallied, a significant dose-dependent trend was noted. Therefore, our study presents initial imprints on determination of abamectin-mediated cellular toxicity in avifauna which can be instrumental in checking polluted ecosystems.


Subject(s)
Coturnix/metabolism , Erythrocytes/drug effects , Insecticides/adverse effects , Ivermectin/analogs & derivatives , Micronucleus Tests/veterinary , Animals , Dose-Response Relationship, Drug , Female , Ivermectin/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...