Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 9(2): e0108821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34523973

ABSTRACT

Humicola grisea var. thermoidea is a thermophilic ascomycete and important enzyme producer that has an efficient enzymatic system with a broad spectrum of thermostable carbohydrate-active (CAZy) enzymes. These enzymes can be employed in lignocellulose biomass deconstruction and other industrial applications. In this work, the genome of H. grisea var. thermoidea was sequenced. The acquired sequence reads were assembled into a total length of 28.75 Mbp. Genome features correlate with what was expected for thermophilic Sordariomycetes. The transcriptomic data showed that sugarcane bagasse significantly upregulated genes related to primary metabolism and polysaccharide deconstruction, especially hydrolases, at both pH 5 and pH 8. However, a number of exclusive and shared genes between the pH values were found, especially at pH 8. H. grisea expresses an average of 211 CAZy enzymes (CAZymes), which are capable of acting in different substrates. The top upregulated genes at both pH values represent CAZyme-encoding genes from different classes, including acetylxylan esterase, endo-1,4-ß-mannosidase, exoglucanase, and endoglucanase genes. For the first time, the arsenal that the thermophilic fungus H. grisea var. thermoidea possesses to degrade the lignocellulosic biomass is shown. Carbon source and pH are of pivotal importance in regulating gene expression in this organism, and alkaline pH is a key regulatory factor for sugarcane bagasse hydrolysis. This work paves the way for the genetic manipulation and robust biotechnological applications of this fungus. IMPORTANCE Most studies regarding the use of fungi as enzyme producers for biomass deconstruction have focused on mesophile species, whereas the potential of thermophiles has been evaluated less. This study revealed, through genome and transcriptome analyses, the genetic repertoire of the biotechnological relevant thermophile fungus Humicola grisea. Comparative genomics helped us to further understand the biology and biotechnological potential of H. grisea. The results demonstrate that this fungus possesses an arsenal of carbohydrate-active (CAZy) enzymes to degrade the lignocellulosic biomass. Indeed, it expresses more than 200 genes encoding CAZy enzymes when cultivated in sugarcane bagasse. Carbon source and pH are key factors for regulating the gene expression in this organism. This work shows, for the first time, the great potential of H. grisea as an enzyme producer and a gene donor for biotechnological applications and provides the base for the genetic manipulation and robust biotechnological applications of this fungus.


Subject(s)
Ascomycota/enzymology , Ascomycota/metabolism , Carbohydrate Metabolism/physiology , Lignin/metabolism , Saccharum/microbiology , Ascomycota/genetics , Base Composition/genetics , Biomass , Carbohydrate Metabolism/genetics , Gene Expression Profiling , Genome, Fungal/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , High-Throughput Nucleotide Sequencing , Saccharum/metabolism , Transcriptome/genetics , Whole Genome Sequencing
2.
Enzyme Microb Technol ; 133: 109447, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31874680

ABSTRACT

To increase the efficiency of enzyme cocktails in deconstructing cellulose and hemicelluloses present in the plant cell wall, a combination of enzymes with complementary activities is required. Xylan is the main hemicellulose component of energy crops and for its complete hydrolysis a system consisting of several enzymes acting cooperatively, including endoxylanases (XYN), ß-xylosidases (XYL) and α-l-arabinofuranosidases (ABF) is necessary. The current work aimed at evaluating the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of steam-exploded sugarcane bagasse (SEB). One recombinant endoxylanase (HXYN2) and one recombinant ß-xylosidase (HXYLA) from Humicola grisea var thermoidea, together with an α-l-arabinofuranosidase (AFB3) from Penicillium pupurogenum, all produced in Pichia pastoris, were used to formulate an efficient enzyme mixture for SEB hydrolysis using a 23 Central Composite Rotatable Design (CCRD). The most potent enzyme for SEB hydrolysis was ABF3. Subsequently, the optimal enzyme mixture was used in combination with commercial cellulases (Accellerase 1500), either simultaneously or in sequential experiments. The supplementation of Accellerase 1500 with hemicellulases enhanced the glucose yield from SEB hydrolysis by 14.6%, but this effect could be raised to 50% when hemicellulases were added prior to hydrolysis with commercial cellulases. These results were supported by scanning electron microscopy, which revealed the effect of enzymatic hydrolysis on SEB fibers. Our results show the potential of complementary enzyme activities to improve enzymatic hydrolysis of SEB, thus improving the efficiency of the hydrolytic process.


Subject(s)
Cellulose , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Saccharum/metabolism , Steam , Cellulose/metabolism , Hydrolysis , Penicillium/enzymology , Penicillium/genetics , Pichia/enzymology , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Environ Sci Pollut Res Int ; 23(21): 21554-21564, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27515526

ABSTRACT

An alternative method to control rice blast (Magnaporthe oryzae) is to include biological agent in the disease management strategy. The objective of this study was to assess the leaf blast-suppressing effects of rice phylloplane fungi. One Cladosporium sp. phylloplane fungus was shown to possess biocontrolling traits based on its morphological characteristics and an analysis of its 18S ribosomal DNA. Experiments aimed at determining the optimal time to apply the bioagent and the mechanisms involved in its rice blast-suppressing activities were performed under controlled greenhouse conditions. We used foliar spraying to apply the Cladosporium sp. 48 h prior to applying the pathogen, and we found that this increased the enzymatic activity. Furthermore, in vitro tests performed using isolate C24 showed that it possessed the ability to secrete endoxylanases and endoglucanases. When Cladosporium sp. was applied either prior to or simultaneous with the pathogen, we observed a significant increase in defence enzyme activity, and rice blast was suppressed by 84.0 and 78.6 %, respectively. However, some enzymes showed higher activity at 24 h while others did so at 48 h after the challenge inoculation. Cladosporium sp. is a biological agent that is capable of suppressing rice leaf blast by activating biochemical defence mechanisms in rice plants. It is highly adapted to natural field conditions and should be included in further studies aimed at developing strategies to support ecologically sustainable disease management and reduce environmental pollution by the judicious use of fungicidal sprays.


Subject(s)
Biological Control Agents/pharmacology , Cladosporium/physiology , Magnaporthe/physiology , Oryza/microbiology , Plant Diseases/prevention & control , Biological Control Agents/classification , Oryza/immunology , Plant Diseases/microbiology , Plant Immunity , Plant Leaves/microbiology
4.
Enzyme Res ; 2013: 287343, 2013.
Article in English | MEDLINE | ID: mdl-23936633

ABSTRACT

Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A) was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as K m = 27.5 ± 4.33 mg/mL, V max = 1.185 ± 0.11 mmol/min, and 55.8 IU (international units)/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol.

5.
Appl Biochem Biotechnol ; 170(3): 598-608, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23564431

ABSTRACT

Xylanases have raised interest because of their potential applications in various industrial fields, including the pulp and paper industries, bioethanol production, and the feed industry. In bioethanol production from lignocellulosic compounds, xylanase can improve the hydrolysis of cellulose into fermentable sugars, since the xylan restricts the cellulases from acting efficiently. In this work, a new thermophilic Streptomyces sp. was selected for its ability to produce xylanase. Carbon source selection is an important factor in the production of hemicellulases. The highest activity was obtained when Streptomyces sp. I3 was grown in the presence of wheat bran. Xylanase activity was partially characterized concerning the effect of pH and temperature on activity and thermostability, and the effects of different metal ions were also tested. The pH and temperature profile showed optimal activity at pH 6.0/70 °C. Zymogram analysis showed multiple xylanases (39, 21, 18, and 17 kDa). Xylanases studied in this work are thermophilic, thermostable, and active in a wide pH range; they have potential to be used in the development of new processes of biotechnological interest.


Subject(s)
Lignin/metabolism , Streptomyces/metabolism , Xylosidases/biosynthesis , Cellulase/biosynthesis , Cellulose/metabolism , Culture Media , Dietary Fiber , Enzyme Stability , Glycoside Hydrolases/biosynthesis , Hydrogen-Ion Concentration , Kinetics , Phylogeny , Soil Microbiology , Streptomyces/genetics , Temperature , Xylans/metabolism
6.
Extremophiles ; 6(3): 177-84, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12072952

ABSTRACT

Bulk production of xylanases from thermophilic microorganisms is a prerequisite for their use in industrial processes. As effective secretors of gene products, fungal expression systems provide a promising, industrially relevant alternative to bacteria for heterologous enzyme production. We are currently developing the yeast Kluyveromyces lactis and the filamentous fungus Trichoderma reesei for the extracellular production of thermophilic enzymes for the pulp and paper industry. The K. lactis system has been tested with two thermophilic xylanases and secretes gram amounts of largely pure xylanase A from Dictyoglomus thermophilum in chemostat culture. The T. reesei expression system involves the use of the cellobiohydrolase I (CBHI) promoter and gene fusions for the secretion of heterologous thermostable xylanases of both bacterial and fungal origin. We have reconstructed the AT-rich xynB gene of Dictyoglomus thermophilum according to Trichoderma codon preferences and demonstrated a dramatic increase in expression. A heterologous fungal gene, Humicola grisea xyn2, could be expressed without codon modification. Initial amounts of the XYN2 protein were of a gram per liter range in shake-flask cultivations, and the gene product was correctly processed by the heterologous host. Comparison of the expression of three thermophilic heterologous microbial xylanases in T. reesei demonstrates the need for addressing each case individually.


Subject(s)
Bacteria/enzymology , Kluyveromyces/genetics , Trichoderma/genetics , Xylosidases/genetics , Amino Acid Sequence , Base Sequence , DNA, Bacterial , Electrophoresis, Polyacrylamide Gel , Recombinant Proteins/genetics , Sequence Homology, Amino Acid , Xylan Endo-1,3-beta-Xylosidase , Xylosidases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...