Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(4): 106545, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37128547

ABSTRACT

Alzheimer's disease (AD) is characterized by neurodegeneration, memory loss, and social withdrawal. Brain inflammation has emerged as a key pathogenic mechanism in AD. We hypothesized that oxytocin, a pro-social hypothalamic neuropeptide with anti-inflammatory properties, could have therapeutic actions in AD. Here, we investigated oxytocin expression in experimental models of AD, and evaluated the therapeutic potential of treatment with oxytocin. Amyloid-ß peptide oligomers (AßOs) reduced oxytocin expression in vitro and in vivo, and treatment with oxytocin prevented microglial activation induced by AßOs in purified microglial cultures. Treatment of aged APP/PS1 mice, a mouse model of AD, with intranasal oxytocin attenuated microglial activation and favored deposition of Aß in dense core plaques, a potentially neuroprotective mechanism. Remarkably, treatment with oxytocin alleviated social and non-social memory impairments in aged APP/PS1 mice. Our findings point to oxytocin as a potential therapeutic target to reduce brain inflammation and correct memory deficits in AD.

2.
Mol Neurobiol ; 57(3): 1473-1483, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31760608

ABSTRACT

Alzheimer's disease (AD) is the main cause of dementia in the elderly. Although activation of brain insulin signaling has been shown to be neuroprotective, to preserve memory in AD models, and appears beneficial in patients, the role of insulin-like growth factor 1 (IGF1) remains incompletely understood. We found reduced active/inactive IGF1 ratio and increased IGF1R expression in postmortem hippocampal tissue from AD patients, suggesting impaired brain IGF1 signaling in AD. Active/inactive IGF-1 ratio was also reduced in the brains of mouse models of AD. We next investigated the possible protective role of IGF1 in AD models. We used a recombinant adenoviral vector, RAd-IGF1, to drive the expression of IGF1 in primary hippocampal neuronal cultures prior to exposure to AßOs, toxins that accumulate in AD brains and have been implicated in early synapse dysfunction and memory impairment. Cultures transduced with RAd-IGF1 showed decreased binding of AßOs to neurons and were protected against AßO-induced neuronal oxidative stress and loss of dendritic spines. Significantly, in vivo transduction with RAd-IGF1 blocked memory impairment caused by intracerebroventricular (i.c.v.) infusion of AßOs in mice. Our results demonstrate altered active IGF1 and IGF1R levels in AD hippocampi, and suggest that boosting brain expression of IGF1 may comprise an approach to prevent neuronal damage and memory loss in AD.


Subject(s)
Adenoviridae/pathogenicity , Alzheimer Disease/metabolism , Hippocampus/metabolism , Insulin-Like Growth Factor I/metabolism , Memory Disorders/prevention & control , Adenoviridae/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/virology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Female , Humans , Male , Memory/physiology , Memory Disorders/metabolism , Mice , Neurons/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...