Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 85(9): 364-375, 2022 05 03.
Article in English | MEDLINE | ID: mdl-34933666

ABSTRACT

The beneficial pharmacological actions including antioxidant effects as an antileishmanial, antibacterial, antifungal, antidiabetic, anti-inflammatory, antitumor, antiviral, and analgesic of compounds isolated from Combretum mellifluum Eichler (Combretaceae) are well established. The aim of the present study was to determine the phytochemistry as well as assess the antioxidant and antileishmanial activities of the leaves from Combretum mellifluum Eichler (Combretaceae). Analysis of ethanolic extract resulted in isolation and identification of two epimeric mixtures of four previously unknown cycloartane-type triterpenoids, methyl quadrangularate M and methyl 24-epiquadrangularate M, and 2α,3ß,24ß-trihydroxy-cycloart-25-ene and 2α, 3ß, 24α-trihydroxy-cycloart-25-ene, and eight known compounds. Their structures were using one-dimensional nuclear magnetic resonance (1D NMR), 2D NMR and high-resolution electrospray ionization mass spectroscopy (HRESIMS) analysis. Further, the extract and fractions were tested for antioxidant potential. The ethyl acetate and aqueous fractions demonstrated the highest antioxidant activity against 2,2-dipheny-1-picrylhydrazl (DPPH) free radicals, which correlated directly with total flavonoid content. All extracts and fractions from C. mellifluum Eichler were assessed for antileishmanial activity. The supernatant fraction exhibited highest potential, inhibiting the growth of Leishmania amazonensis with IC50 value 31.29 µg/ml. Our findings provide information on the chemical composition of C. mellifluum and the potential beneficial therapeutic usefulness as an antioxidant agent in various diseases.


Subject(s)
Combretum , Triterpenes , Antioxidants/analysis , Antioxidants/pharmacology , Combretum/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Triterpenes/analysis , Triterpenes/chemistry , Triterpenes/pharmacology
2.
J Toxicol Environ Health A ; 83(13-14): 525-545, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32568625

ABSTRACT

Caatinga flora which are found in a poor Brazilian region contain a substantial number of endemic taxa with biomedical and social importance for regional communities. This study examined the antioxidant and cytotoxic potential of 35 samples (extracts/fractions) from 12 Caatinga species and determined the antiproliferative and genotoxic action of dichloromethane fraction from Mimosa caesalpiniifolia stem bark (DC-Mca) on human and vegetal cells. Samples were assessed for chemopreventive ability, toxic effects on Artemia salina shrimp as well as cytotoxicity on tumor cell lines and erythrocytes. DC-Mca was also tested with respect to antiproliferative and genotoxic effects upon normal leukocytes and meristematic cells from A. cepa roots. Some extracts reduced free radical levels >95% and 7 samples exhibited a lethal concentration (LC) 50 < 100 µg/ml upon Artemia salina larvae. Eight samples displayed in vitro antitumor effects and three produced hemolysis. Data also demonstrated the pharmacological significance of bioactive extracts from Brazilian semi-arid region. There was no significant relationship between antioxidant, toxic, and antiproliferative activities, and that these properties were dependent upon the extractant. DC-Mca contained betulinic acid as main compound (approximately 70%), which showed higher (1) cytotoxic activity on cancer cell lines and dividing leukocytes, (2) reduced mitotic index of Allium cepa roots, and (3) induced cell cycle arrest and chromosomal bridges, thereby providing native promising sources for phytotherapy development. ABBREVIATIONS: ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); AcOH: ethyl acetate; ANOVA: analysis of variance; SUS: Brazilian Unified Health System; DC-Mca: dichloromethane fraction from Mimosa caesalpiniifolia stem bark; DMSO: dimethylsulfoxide; DPPH: 1,1-diphenyl-2-picrylhydrazyl; EC50: effective concentration 50%; EtOAc: ethyl acetate; FDA: Food and Drug Administration; GC-Qms: gas chromatograph quadrupole mass spectrometer; GI: genotoxic index; HCT-116: colon carcinoma line; HL-60: promyelocytic leukemia line; HPLC: high-performance liquid chromatography; HRAPCIMS: high resolution atmospheric pressure chemical ionization mass spectrum; IC50: inhibitory concentration 50%; LC50: lethal concentration 50%; MeOH = methyl alcohol; MI: mitotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide; MutI: mutagenic index; OVCAR-8 = ovarian carcinoma line; PBMC: peripheral blood mononuclear cells; RPMI-1640: Roswell Park Memorial Institute medium; SF-295: glioblastoma line; TEAC: trolox equivalent antioxidant capacity; TLC: thin-layer chromatography; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Plants, Medicinal/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Brazil , Cell Cycle/drug effects , Cells, Cultured , Cytotoxins/chemistry , Cytotoxins/pharmacology , DNA Damage , Ecosystem , Ecotoxicology , Humans , Methylene Chloride/chemistry , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/classification , Plants, Medicinal/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...