Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol ; 125(3): 218-230, 2021 03.
Article in English | MEDLINE | ID: mdl-33622538

ABSTRACT

In marine ecosystems, macroalgae are the habitat for several microorganisms, fungi being among them. In the Antarctic benthic coastal ecosystem, macroalgae play a key role in organic matter cycling. In this study, 13 different macroalgae from Potter Cove and surrounding areas were sampled and 48 fungal isolates were obtained from six species, four Rhodophyta Ballia callitricha, Gigartina skottsbergii, Neuroglossum delesseriae and Palmaria decipiens, and two Phaeophyceae: Adenocystis utricularis and Ascoseira mirabilis. Fungal isolates mostly belonged to the Ascomycota phylum (Antarctomyces, Cadophora, Cladosporium, Penicillium, Phialocephala, and Pseudogymnoascus) and only one to the phylum Mucoromycota. Two of the isolates could not be identified to genus level, implying that Antarctica is a source of probable novel fungal taxa with enormous bioprospecting and biotechnological potential. 73% of the fungal isolates were moderate eurypsychrophilic (they grew at 5-25 °C), 12.5% were eurypsychrophilic and grew in the whole range, 12.5% of the isolates were narrow eurypsychrophilic (growth at 15-25 °C), and Mucoromycota AUe4 was classified as stenopsychrophilic as it grew at 5-15 °C. Organic extracts of seven macroalgae from which no fungal growth was obtained (three red algae Georgiella confluens, Gymnogongrus turquetii, Plocamium cartlagineum, and four brown algae Desmarestia anceps, D. Antarctica, Desmarestia menziesii, Himantothallus grandifolius) were tested against representative fungi of the genera isolated in this work. All extracts presented fungal inhibition, those from Plocamium cartilagineum and G. turquetii showed the best results, and for most of these macroalgae, this represents the first report of antifungal activity and constitute a promising source of compounds for future evaluation.


Subject(s)
Seaweed , Antarctic Regions , Bioprospecting , Comprehension , Ecosystem , Fungi
2.
Appl Microbiol Biotechnol ; 59(4-5): 472-6, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12172612

ABSTRACT

An intergeneric osmotolerant hybrid yeast, PB2, was used together with the parental strains to study glycerol and arabitol production in batch culture. This fusion product was previously obtained by protoplast fusion between Torulaspora delbrueckii and Saccharomyces cerevisiae. Polyols and biomass production were determined in batch culture under aerobic conditions. Under the conditions tested, using PB2 hybrid and both parental strains, the best results were obtained with the hybrid. Arabitol reached a final concentration of 70 g/l and glycerol was increased to up to 50 g/l.


Subject(s)
Glycerol/metabolism , Hybridization, Genetic , Protoplasts/physiology , Saccharomycetales/metabolism , Sugar Alcohols/metabolism , Culture Media , Fermentation , Industrial Microbiology/methods , Osmotic Pressure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomycetales/genetics , Saccharomycetales/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...