Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 8540, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595778

ABSTRACT

The severe acute respiratory syndrome (SARS) coronavirus 2 (CoV-2) variant Omicron spread more rapid than the other variants of SARS-CoV-2 virus. Mutations on the Spike (S) protein receptor-binding domain (RBD) are critical for the antibody resistance and infectivity of the SARS-CoV-2 variants. In this study, we have used accelerated molecular dynamics (aMD) simulations and free energy calculations to present a systematic analysis of the affinity and conformational dynamics along with the interactions that drive the binding between Spike protein RBD and human angiotensin-converting enzyme 2 (ACE2) receptor. We evaluate the impacts of the key mutation that occur in the RBDs Omicron and other variants in the binding with the human ACE2 receptor. The results show that S protein Omicron has stronger binding to the ACE2 than other variants. The evaluation of the decomposition energy per residue shows the mutations N440K, T478K, Q493R and Q498R observed in Spike protein of SARS-CoV-2 provided a stabilization effect for the interaction between the SARS-CoV-2 RBD and ACE2. Overall, the results demonstrate that faster spreading of SARS-CoV-2 Omicron may be correlated with binding affinity of S protein RBD to ACE2 and mutations of uncharged residues to positively charged residues such as Lys and Arg in key positions in the RBD.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Humans , Molecular Dynamics Simulation , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Front Chem ; 10: 1061624, 2022.
Article in English | MEDLINE | ID: mdl-36700078

ABSTRACT

Eugenol is a natural compound with well-known repellent activity. However, its pharmaceutical and cosmetic applications are limited, since this compound is highly volatile and thermolabile. Nanoencapsulation provides protection, stability, conservation, and controlled release for several compounds. Here, eugenol was included in ß-cyclodextrin, and the complex was characterized through X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR). Additionally, we used molecular dynamics simulations to explore the eugenol-ß-cyclodextrin complex stability with temperature increases. Our computational result demonstrates details of the molecular interactions and conformational changes of the eugenol-ß-cyclodextrin complex and explains its stability between temperatures 27°C and 48°C, allowing its use in formulations that are subjected to varied temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...