Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Rev Rep ; 18(2): 609-625, 2022 02.
Article in English | MEDLINE | ID: mdl-34453694

ABSTRACT

Mesenchymal stem cells comprise a natural reservoir of undifferentiated cells within adult tissues. Given their self-renewal, multipotency, regenerative potential and immunomodulatory properties, MSCs have been reported as a promising cell therapy for the treatment of different diseases, including neurodegenerative and autoimmune diseases. In this study, we investigated the immunomodulatory properties of human tubal mesenchymal stem cells (htMSCs) using the EAE model. htMSCs were able to suppress dendritic cells activation downregulating antigen presentation-related molecules, such as MHCII, CD80 and CD86, while impairing IFN-γ and IL-17 and increasing IL-10 and IL-4 secretion. It further correlated with milder disease scores when compared to the control group due to fewer leukocytes infiltrating the CNS, specially Th1 and Th17 lymphocytes, associated with increased IL-10 secreting Tr1 cells. Conversely, microglia were less activated and infiltrating mononuclear cells secreted higher levels of IL-4 and IL-10 and expressed reduced chemokine receptors as CCR4, CCR6 and CCR8. qPCR of the spinal cords revealed upregulation of indoleamine-2,3-dioxygenase (IDO) and brain derived neurotrophic factor (BDNF). Taken together, here evidenced the potential of htMSCs as an alternative for the treatment of inflammatory, autoimmune or neurodegenerative diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mesenchymal Stem Cells , Adult , Animals , Central Nervous System , Encephalomyelitis, Autoimmune, Experimental/therapy , Fallopian Tubes , Female , Humans , Interleukin-10 , Interleukin-4
2.
Front Med Technol ; 2: 558984, 2020.
Article in English | MEDLINE | ID: mdl-35047876

ABSTRACT

Dengue virus represents the main arbovirus affecting humans, but there are no effective drugs or available worldwide licensed vaccine formulations capable of conferring full protection against the infection. Experimental studies and results generated after the release of the licensed anti-DENV vaccine demonstrated that induction of high-titer neutralizing antibodies does not represent the sole protection correlate and that, indeed, T cell-based immune responses plays a relevant role in the establishment of an immune protective state. In this context, this study aimed to further demonstrate protective features of immune responses elicited in immunocompetent C57BL/6 mice immunized with three plasmids encoding DENV2 nonstructural proteins (NS1, NS3, and NS5), which were subsequently challenged with a DENV2 strain naturally capable of inducing lethal encephalitis in immunocompetent mouse strains. The animals were immunized intramuscularly with the DNA vaccine mix and complete protection was observed among vaccinated mice. Vaccine induced protection correlated with the cytokine profiles expressed by spleen cells and brain-infiltrating mononuclear cells. The results confirm the pivotal role of cellular immune responses targeting nonstructural DENV proteins and validate the experimental model based on a DENV2 strain capable of infecting and killing immunocompetent mice as a tool for the evaluation of protective immunity induced by anti-DENV vaccines.

4.
Article in English | MEDLINE | ID: mdl-28932235

ABSTRACT

Viral infections have long been the cause of severe diseases to humans, increasing morbidity and mortality rates worldwide, either in rich or poor countries. Yellow fever virus, H1N1 virus, HIV, dengue virus, hepatitis B and C are well known threats to human health, being responsible for many million deaths annually, associated to a huge economic and social cost. In this context, a recently introduced flavivirus in South America, called Zika virus (ZIKV), led the WHO to declare in February 1st 2016 a warning on Public Health Emergency of International Concern (PHEIC). ZIKV is an arbovirus of the Flaviviridae family firstly isolated from sentinels Rhesus sp. monkeys at the Ziika forest in Uganda, Africa, in 1947. Lately, the virus has well adapted to the worldwide spread Aedes aegypti mosquito, the vector for DENV, CHIKV, YFV and many others. At first, it was not considered a threat to human health, but everything changed when a skyrocketing number of babies born with microcephaly and adults with Guillain-Barré syndrome were reported, mainly in northeastern Brazil. It is now well established that the virus is responsible for the so called congenital Zika syndrome (CZS), whose most dramatic features are microcephaly, arthrogryposis and ocular damage. Thus, in this review, we provide a brief discussion of these main clinical aspects of the CZS, correlating them with the experimental animal models described so far.

SELECTION OF CITATIONS
SEARCH DETAIL
...