Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38797491

ABSTRACT

BACKGROUND AND PURPOSE: Chronic neuropathic pain (NP) is commonly associated with cognitive and emotional impairments. Cannabidiol (CBD) presents a broad spectrum of action with a potential analgesic effect. This work investigates the CBD effect on comorbidity between chronic NP, depression, and memory impairment. EXPERIMENTAL APPROACH: The connection between the neocortex and the hippocampus was investigated with biotinylated dextran amine (BDA) deposits in the prelimbic cortex (PrL). Wistar rats were submitted to chronic constriction injury (CCI) of the sciatic nerve and CA1 treatment with CBD (15, 30, 60 nmol). KEY RESULTS: BDA-labeled were found in CA1 and dentate gyrus. CCI-induced mechanical and cold allodynia increased c-Fos protein expression in the PrL and CA1. The number of astrocytes in PrL and CA1 increased, and the number of neuroblasts decreased in CA1. The CCI animals showed increasing depressive-like behaviors, such as memory impairment. CBD (60 nmol) treatment decreased mechanical and cold allodynia, attenuated depressive-associated behaviors, and improved memory performance. Cobalt chloride (CoCl2: 1 nM), WAY-100635 (0.37 nmol), and AM251 (100 nmol) intra-PrL reversed the CBD (60 nmol) effect intra-CA1, both in nociceptive, cognitive, and depressive behaviors. CONCLUSION: CBD represents a promising therapeutic perspective in the pharmacological treatment of chronic NP and associated comorbidities such as depression and memory impairments. The CBD effects possibly recruit the CA1-PrL pathway, inducing neuroplasticity. CBD acute treatment into the CA1 produces functional and molecular morphological improvements.

2.
Neurosci Lett ; 820: 137572, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38072029

ABSTRACT

BACKGROUND: Haloperidol (HAL) is an antipsychotic used in the treatment of schizophrenia. However, adverse effects are observed in the extrapyramidal tracts due to its systemic action. Natural compounds are among the treatment alternatives widely available in Brazilian biodiversity. Mygalin (MY), a polyamine that was synthesized from a natural molecule present in the hemolymph of the Acanthoscurria gomesian spider, may present an interesting approach. AIMS: This study aimed to evaluate the effect of MY in mice subjected to HAL-induced catalepsy. METHODS: Male Swiss mice were used. Catalepsy was induced by intraperitoneal administration of HAL (0.5 mg/kg - 1 mL/Kg) diluted in physiological saline. To assess the MY effects on catalepsy, mice were assigned to 4 groups: (1) physiological saline (NaCl 0.9 %); (2) MY at 0.002 mg/Kg; (3) MY at 0.02 mg/Kg; (4) MY at 0.2 mg/Kg. MY or saline was administered intraperitoneally (IP) 10 min b HAL before saline. Catalepsy was evaluated using the bar test at 15, 30, 60, 90, and 120 min after the IP administration of HAL. RESULTS: The latency time in the bar test 15, 30, 60, and 90 min increased (p < 0.05) after IP administration of HAL compared to the control group. Catalepsy was attenuated 15, 30, 90, and 120 min (p < 0.05) after the IP-administration of MY at 0.2 mg/Kg; while MY at 0.02 mg/Kg attenuated catalepsy 15 min after the HAL treatment. Our findings showed that MY attenuates the HAL-induced cataleptic state in mice.


Subject(s)
Antipsychotic Agents , Spiders , Mice , Male , Animals , Haloperidol/pharmacology , Catalepsy/chemically induced , Catalepsy/drug therapy , Antipsychotic Agents/adverse effects
3.
Exp Brain Res ; 241(11-12): 2591-2604, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37725136

ABSTRACT

Neuropathic pain (NP) represents a complex disorder with sensory, cognitive, and emotional symptoms. The medial prefrontal cortex (mPFC) takes critical regulatory roles and may change functionally and morphologically during chronic NP. There needs to be a complete understanding of the neurophysiological and psychopharmacological bases of the NP phenomenon. This study aimed to investigate the participation of the infralimbic division (IFL) of the mPFC in chronic NP, as well as the role of the N-methyl-D-aspartic acid receptor (NMDAr) in the elaboration of chronic NP. Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham-procedure ("false operated"). Electrical neurostimulation of the IFL/mPFC was performed by low-frequency stimuli (20 µA, 100 Hz) applied for 15 s by deep brain stimulation (DBS) device 21 days after CCI. Either cobalt chloride (CoCl2 at 1.0 mM/200 nL), NMDAr agonist (at 0.25, 1.0, and 2.0 nmol/200 nL) or physiological saline (200 nL) was administered into the IFL/mPFC. CoCl2 administration in the IFL cortex did not alter either mechanical or cold allodynia. DBS stimulation of the IFL cortex decreased mechanical allodynia in CCI rats. Chemical stimulation of the IFL cortex by an NMDA agonist (at 2.0 nmol) decreased mechanical allodynia. NMDA at any dose (0.25, 1.0, and 2.0 nmol) reduced the flicking/licking duration in the cold test. These findings suggest that the IFL/mPFC and the NMDAr of the neocortex are involved in attenuating chronic NP in rats.


Subject(s)
Hyperalgesia , Neuralgia , Rats , Male , Animals , N-Methylaspartate/pharmacology , Pain Measurement , Rats, Wistar , Neuralgia/therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Prefrontal Cortex/metabolism
4.
J Biochem Mol Toxicol ; 37(7): e23353, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37069807

ABSTRACT

Depression has a high rate of comorbidity with neuropathic pain. This study aims to investigate the effect of Mygalin, an acylpolyamine synthesized from a natural molecule in the hemolymph of the Acanthoscurria gomesiana spider, injected into the prelimbic (PrL) region of the medial prefrontal cortex on chronic neuropathic pain and depression comorbidity in rats. To investigate that comorbidity, neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. The biotinylated biodextran amine (BDA) bidirectional neural tract tracer was microinjected into the PrL cortex to study brain connections. Rodents were further subjected to von Frey (mechanical allodynia), acetone (cold allodynia), and forced swim (depressive-like behavior) tests. BDA neural tract tracer-labeled perikarya were found in the dorsal columns of the periaqueductal gray matter (dPAG) and the dorsal raphe nucleus (DRN). Neuronal activity of DRN neurons decreased in CCI rats. However, PrL cortex treatment with Mygalin increased the number of spikes on DRN neurons. Mygalin treatment in the PrL cortex decreased both mechanical and cold allodynia and immobility behavior in CCI rats. PrL cortex treatment with N-methyl-D-aspartate (NMDA) receptor receptors attenuated the analgesic and antidepressive effects caused by Mygalin. The PrL cortex is connected with the dPAG and DRN, and Mygalin administration into the PrL increased the activity of DRN neurons. Mygalin in the PrL cortex produced antinociceptive and antidepressive-like effects, and the NMDA agonist reversed these effects.


Subject(s)
Neuralgia , Spiders , Rats , Male , Animals , Depression , Hyperalgesia , N-Methylaspartate/pharmacology , Rats, Wistar , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Receptors, N-Methyl-D-Aspartate , Comorbidity , Prefrontal Cortex
5.
Neuromodulation ; 26(8): 1622-1636, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36057495

ABSTRACT

BACKGROUND AND AIMS: The dysgranula parts of the posterior insular cortex (PIC) stimulation (PICS) has been investigated as a new putative cortical target for nonpharmacologic therapies in patients with chronic and neuropathic pain (NP). This work investigates the neural bases of insula neurostimulation-induced antinociception and glutamatergic neurochemical mechanisms recruited by the PICS in animals with neuropathy. MATERIALS AND METHODS: Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham procedure ("false operated"). Either the Cascade Blue 3000 MW lysine-fixable dextran (CBD) or the biotinylated dextran amine 3000 MW (BDA) neural tract tracer was microinjected into the PIC. The electrical PICS was performed at a low frequency (20 µA, 100 Hz) for 15 seconds by a deep brain stimulation device. PIC N-methyl-D-aspartate (NMDA) receptors (NMDAR) blockade with the selective antagonist LY235959 (at 2, 4, and 8 nmol/200 nL) followed by PICS was investigated in rats with CCI. RESULTS: PIC sends projections to the caudal pontine reticular nucleus, alpha part of the parvicellular reticular nucleus, dorsomedial tegmental area, and secondary somatosensory cortex (S2). PICS decreased both mechanical and cold allodynia in rats with chronic NP. Blockade of NMDAR in the PIC with LY235959 at 8 nmol attenuated PICS-produced antinociception. CONCLUSION: Neuroanatomic projections from the PIC to pontine reticular nuclei and S2 may contribute to chronic NP signaling. PICS attenuates the chronic NP, and the NMDA glutamatergic system in the PIC may be involved in PICS-induced antinociception in rodents with NP conditions.


Subject(s)
N-Methylaspartate , Neuralgia , Humans , Rats , Male , Animals , N-Methylaspartate/therapeutic use , Hyperalgesia/therapy , Insular Cortex , Rats, Wistar , Neuralgia/drug therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/therapeutic use
6.
Behav Brain Res ; 415: 113522, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34391797

ABSTRACT

BACKGROUND: Motor cortex stimulation (MCS) is proper as a non-pharmacological therapy for patients with chronic and neuropathic pain (NP). AIMS: This work aims to investigate if the MCS in the primary motor cortex (M1) produces analgesia and how the MCS could interfere in the MCS-induced analgesia. Also, to elucidate if the persistent activation of N-methyl-d-aspartic acid receptor (NMDAr) in the periaqueductal grey matter (PAG) can contribute to central sensitisation of the NP. METHODS: Male Wistar rats were submitted to the von Frey test to evaluate the mechanical allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve. The MCS was performed with low-frequency (20 µA, 100 Hz) currents during 15 s by a deep brain stimulation (DBS) device. Moreover, the effect of M1-treatment with an NMDAr agonist (at 2, 4, and 8 nmol) was investigated in CCI rats. The PAG dorsomedial column (dmPAG) was pretreated with the NMDAr antagonist LY 235959 (at 8 nmol), followed by MCS. RESULTS: The MCS decreased the mechanical allodynia in rats with chronic NP. The M1-treatment with an NMDA agonist at 2 and 8 nmol reduced the mechanical allodynia in CCI rats. In addition, dmPAG-pretreatment with LY 235959 at 8 nmol attenuated the mechanical allodynia evoked by MCS. CONCLUSION: The M1 cortex glutamatergic system is involved in the modulation of chronic NP. The analgesic effect of MCS may depend on glutamate signaling recruitting NMDAr located on PAG neurons in rodents with chronic NP.


Subject(s)
Chronic Pain/therapy , Deep Brain Stimulation , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Motor Cortex/drug effects , Neuralgia/therapy , Periaqueductal Gray/drug effects , Receptors, N-Methyl-D-Aspartate/physiology , Analgesia , Animals , Disease Models, Animal , Isoquinolines/pharmacology , Male , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
7.
Pain Med ; 22(2): 338-351, 2021 02 23.
Article in English | MEDLINE | ID: mdl-32875331

ABSTRACT

BACKGROUND: Chronic constriction injury (CCI) is a model of neuropathic pain induced by four loose ligatures around the sciatic nerve. This work aimed to investigate the sensory, affective, cognitive, and motor changes induced by an adaptation of the CCI model by applying a single ligature around the sciatic nerve. METHODS: Mechanical allodynia was measured from day 1 to day 28 postsurgery by the von Frey test. The beam walking test (BWT) was conducted weekly until 28 days after surgery. Anxiety- and depression-like behaviors, and cognitive performance were assessed through the open field (OF), forced swimming (FS), and novel object recognition (NOR) tests, respectively, 21 days after surgery. RESULTS: The two CCI models, both Bennett and Xie's model (four ligatures of the sciatic nerve) and a modification of it (one ligature), induced mechanical allodynia, increased immobility in the FS, and reduced recognition index in the NOR. The exploratory behavior and time spent in the central part of the arena decreased, while the defensive behavior increased in the OF. The animals subjected to the two CCI models showed motor alterations in the BWT; however, autotomy was observed only in the group with four ligatures and not in the group with a single ligature. CONCLUSIONS: Overall these results demonstrate that our adapted CCI model, using a single ligature around the sciatic nerve, induces sensory, affective, cognitive, and motor alterations comparable to the CCI model with four ligatures without generating autotomy. This adaptation to the CCI model may therefore represent an appropriate and more easily performed model for inducing neuropathic pain and study underlying mechanisms and effective treatments.


Subject(s)
Cognitive Dysfunction , Mononeuropathies , Neuralgia , Animals , Constriction , Disease Models, Animal , Hyperalgesia/epidemiology , Neuralgia/epidemiology , Neuralgia/etiology , Rats , Sciatic Nerve
8.
Brain Res Bull ; 165: 118-128, 2020 12.
Article in English | MEDLINE | ID: mdl-33038420

ABSTRACT

Neuropathic pain (NP) is a challenge due to our limited understanding of the mechanisms that initiate and maintain chronic pain. The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is an important area of the emotional and cognitive components of pain and pharmacological systems can interact into the neocortex to elaborate the chronic pain. This work aimed to investigate the pharmacological cross-talk between synaptic neurotransmission, neuroanatomical approaches and NP conditions. A bidirectional neural tract tracer, the 3000-molecular-weight biodextran (BDA) was microinjected into the PrL cortex. The mechanical withdrawal threshold (MWT) was recorded by a von Frey test, and the effect of prelimbic cortex CB1, NMDA, and TRPV1 receptor modulation was evaluated 21 days after chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. Microinjection of a bidirectional neurotracer in the PrL cortex showed connections with the lateral division of the mediodorsal thalamic nucleus (MDL), central division of the mediodorsal thalamic nucleus (MDC), centrolateral thalamic nucleus (CL), ventromedial thalamic nucleus (VM), and the paracentral thalamic nucleus (PC). In detail, AM251, a CB1 receptor antagonist (at 50, 100 and 200 pmol) microinjections intra-PrL cortex decreased the MWT. Administrations of 6-iodonordihydrocapsaicin (6-I-CPS), a transient receptor potential vanilloid type 1 (TRPV1) antagonist, at 3 nmol and the endocannabinoid anandamide (AEA) at 50 and 100 pmol increased the MWT. AEA at 200 pmol injected in the PrL cortex decreased the MWT, and this hyperalgesic effect was blocked by 6-I-CPS at 3 nmol. The AEA (at 100 pmol) anti-allodynic effect was attenuated by AM251 (at 5 pmol). The TRPV1 selective agonist N-oleoyldopamine (OLDA) at 10 µM decreased the MWT. The blockade of the NMDA receptor with LY235959 (at 8 nmol) and 6-I-CPS (at 3 nmol) reversed the OLDA (at 10 µM) hyperalgesic effect. These findings showed that the PrL cortex sends pathways to thalamic nuclei that can mediate the nociception. We also suggest that the PrL cortex is involved in the potentiation and maintenance of mechanical allodynia by NMDA and TRPV1 receptor activation and that attenuation of this allodynia depends on CB1 receptor activation during NP.


Subject(s)
Cerebral Cortex/metabolism , Neuralgia/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , TRPV Cation Channels/metabolism , Animals , Cannabinoid Receptor Antagonists/pharmacology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cerebral Cortex/drug effects , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Male , Rats , Rats, Wistar
9.
J Neurosci Res ; 98(2): 338-352, 2020 02.
Article in English | MEDLINE | ID: mdl-31396990

ABSTRACT

The chronic constriction injury (CCI) of the sciatic nerve is a nerve injury-based model of neuropathic pain (NP). Comorbidities of NP such as depression, anxiety, and cognitive deficits are associated with a functional reorganization of the medial prefrontal cortex (mPFC). Here, we have employed an adapted model of CCI by placing one single loose ligature around the sciatic nerve in mice for investigating the alterations in sensory, motor, affective, and cognitive behavior and in electrophysiological and biochemical properties in the prelimbic division (PrL) of the mPFC. Our adapted model of CCI induced mechanical allodynia, motor, and cognitive impairments and anxiety- and depression-like behavior. In the PrL division of mPFC was observed an increase in GABA and a decrease in d-aspartate levels. Moreover an increase in the activity of neurons responding to mechanical stimulation with an excitation, mPFC (+), and a decrease in those responding with an inhibition, mPFC (-), was found. Altogether these findings demonstrate that a single ligature around the sciatic nerve was able to induce sensory, affective, cognitive, biochemical, and functional alterations already observed in other neuropathic pain models and it may be an appropriate and easily reproducible model for studying neuropathic pain mechanisms and treatments.


Subject(s)
Aspartic Acid/metabolism , Behavior, Animal/physiology , Neuralgia/physiopathology , Pain Threshold/physiology , Peripheral Nerve Injuries/physiopathology , Sciatic Nerve/injuries , gamma-Aminobutyric Acid/metabolism , Animals , Brain/metabolism , Brain/physiopathology , Cognition/physiology , Male , Mice , Neuralgia/etiology , Neuralgia/metabolism , Pain Measurement , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , Physical Stimulation
10.
Neurochem Res ; 44(9): 2068-2080, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31317507

ABSTRACT

The mechanisms underlying chronic and neuropathic pain pathology involve peripheral and central sensitisation. The medial prefrontal cortex (mPFC) seems to participate in pain chronification, and glutamatergic neurotransmission may be involved in this process. Thus, the aim of the present work was to investigate the participation of the prelimbic (PrL) area of the mPFC in neuropathic pain as well as the role of N-methyl D-aspartate (NMDA) glutamate receptors in neuropathic pain induced by a modified sciatic nerve chronic constriction injury (CCI) protocol in Wistar rats. Neural inputs to the PrL cortex were inactivated by intracortical treatment with the synapse blocker cobalt chloride (CoCl2, 1.0 mM/200 nL) 7, 14, 21, or 28 days after the CCI or sham procedure. The glutamatergic agonist NMDA (0.25, 1 or 4 nmol) or the selective NMDA receptor antagonist LY235959 (2, 4 or 8 nmol) was microinjected into the PrL cortex 21 days after surgery. CoCl2 administration in the PrL cortex decreased allodynia 21 and 28 days after CCI. NMDA at 1 and 4 nmol increased allodynia, whereas LY235959 decreased mechanical allodynia at the highest dose (8 nmol) microinjected into the PrL cortex. These findings suggest that NMDA receptors in the PrL cortex participate in enhancing the late phase of mechanical allodynia after NMDA-induced increases and LY235959-induced decreases in allodynia 21 days after CCI. The glutamatergic system potentiates chronic neuropathic pain by NMDA receptor activation in the PrL cortex. Mechanism of neuropathic pain. The infusion of CoCl2, a synapse activity blocker, into the prelimbic (PrL) division of the medial prefrontal cortex (mPFC) decreased the severity of mechanical allodynia, showing the late participation of the limbic cortex. The glutamatergic system potentiates chronic neuropathic pain via NMDA receptor activation in the PrL cortex.


Subject(s)
Neuralgia/metabolism , Peripheral Nerves/metabolism , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cobalt/pharmacology , Hyperalgesia/drug therapy , Isoquinolines/pharmacology , Male , N-Methylaspartate/pharmacology , Neuralgia/drug therapy , Peripheral Nerve Injuries/drug therapy , Prefrontal Cortex/drug effects , Rats, Wistar , Synaptic Transmission/drug effects
11.
J Psychopharmacol ; 33(1): 51-61, 2019 01.
Article in English | MEDLINE | ID: mdl-30407114

ABSTRACT

BACKGROUND: There is a controversy regarding the key role played by opioid peptide neurotransmission in the modulation of panic-attack-related responses. AIMS: Using a prey versus rattlesnakes paradigm, the present work investigated the involvement of the endogenous opioid peptide-mediated system of the inferior colliculus in the modulation of panic attack-related responses. METHODS: Wistar rats were pretreated with intracollicular administration of either physiological saline or naloxone at different concentrations and confronted with rattlesnakes ( Crotalus durissus terrificus). The prey versus rattlesnake confrontations were performed in a polygonal arena for snakes. The defensive behaviors displayed by prey (defensive attention, defensive immobility, escape response, flat back approach and startle) were recorded twice: firstly, over a period of 15 min the presence of the predator and a re-exposure was performed 24 h after the confrontation, when animals were exposed to the experimental enclosure without the rattlesnake. RESULTS: The intramesencephalic non-specific blockade of opioid receptors with microinjections of naloxone at higher doses decreased both anxiety- (defensive attention and flat back approach) and panic attack-like (defensive immobility and escape) behaviors, evoked in the presence of rattlesnakes and increased non-defensive responses. During the exposure to the experimental context, there was a decrease in duration of defensive attention. CONCLUSIONS: These findings suggest a panicolytic-like effect of endogenous opioid receptors antagonism in the inferior colliculus on innate (panic attack) and conditioned (anticipatory anxiety) fear in rats threatened by rattlesnakes.


Subject(s)
Fear/drug effects , Inferior Colliculi/drug effects , Naloxone/pharmacology , Opioid Peptides/physiology , Panic Disorder/drug therapy , Animals , Avoidance Learning/drug effects , Crotalus , Defense Mechanisms , Escape Reaction/drug effects , Fear/psychology , Inferior Colliculi/physiology , Male , Opioid Peptides/antagonists & inhibitors , Rats , Rats, Wistar
12.
Neuroscience ; 369: 336-349, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29183829

ABSTRACT

Using an innovative approach to study the neural bases of psychiatric disorders, this study investigated the behavioral, morphological and pharmacological bases of panic attack-induced responses in a prey-versus-coral snake paradigm. Mesocricetus auratus was chronically treated with intraperitoneal administration of the selective serotonin uptake inhibitor paroxetine or the gamma aminobutyric acid (GABA)/benzodiazepine receptor agonist alprazolam at three different doses and were then confronted with a venomous coral snake (Micrurus frontalis, Reptilia, Elapidae). The threatened rodents exhibited defensive attention, flat back approaches, defensive immobility, and escape defensive responses in the presence of the venomous snake, followed by increases in Fos protein in limbic structure neurons. Chronic administration of both paroxetine and alprazolam decreased these responses with morphological correlates between the panicolytic effect of both drugs administered at the highest dose and decreases in Fos protein-immunolabeled perikarya found in the amygdaloid complex, hypothalamus and periaqueductal gray matter columns, which are structures that make up the encephalic aversion system. These findings provide face, construct and predictive validities of this new experimental model of anxiety- and panic attack-like behavioral responses displayed by threatened prey confronted with venomous coral snakes.


Subject(s)
Anxiety , Models, Animal , Panic Disorder , Panic , Predatory Behavior , Alprazolam/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Anxiety/metabolism , Anxiety/pathology , Dose-Response Relationship, Drug , Elapidae , Escape Reaction/physiology , Limbic System/drug effects , Limbic System/metabolism , Limbic System/pathology , Male , Mesocricetus , Panic/drug effects , Panic/physiology , Panic Disorder/diet therapy , Panic Disorder/metabolism , Panic Disorder/pathology , Paroxetine/pharmacology , Proto-Oncogene Proteins c-fos/metabolism
13.
Psychopharmacology (Berl) ; 234(20): 3009-3025, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28856406

ABSTRACT

RATIONALE: Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. OBJECTIVES: Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. METHODS: The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. RESULTS: Blockade of GABAA receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a µ-, δ-, and κ1-opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either µ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. CONCLUSIONS: These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.


Subject(s)
Aminoquinolines/administration & dosage , Benzamides/administration & dosage , Fear/drug effects , Oligopeptides/administration & dosage , Pars Reticulata/drug effects , Receptors, Opioid , Somatostatin/analogs & derivatives , Analgesics, Opioid/administration & dosage , Animals , Bicuculline/administration & dosage , Dose-Response Relationship, Drug , Fear/physiology , Male , Naloxone/administration & dosage , Naloxone/analogs & derivatives , Opioid Peptides/administration & dosage , Pars Reticulata/physiology , Rats , Rats, Wistar , Receptors, Opioid/physiology , Somatostatin/administration & dosage , Superior Colliculi/drug effects , Superior Colliculi/physiology , gamma-Aminobutyric Acid/administration & dosage , Nociceptin Receptor , Nociceptin
14.
Neuroscience ; 336: 133-145, 2016 Nov 12.
Article in English | MEDLINE | ID: mdl-27600945

ABSTRACT

It has been proposed that the post-ictal state is associated with the expression of hypoalgesia. It is clear that the projections among the periaqueductal gray matter (PAG), dorsal raphe nucleus (DRN) and locus coeruleus (LC) play a role in pain management. These mesencephalic structures have direct reciprocal opioid and monoaminergic projections to the LC that can possibly modulate post-ictal hypoalgesia. The goal of this study was to examine if LC-opioid and serotonergic/noradrenergic mechanisms signal the post-ictal hypoalgesic responses to tonic-clonic seizures produced by intraperitoneal administration of pentylenetetrazole (PTZ at 64mg/kg), causing an ionophore γ-aminobutyric acid (GABA)-mediated Cl- influx antagonism. The rodents' nociceptive threshold was measured by the tail-flick test. Intra-LC cobalt chloride (1.0nM/0.2µL) microinjections produced intermittent local synaptic inhibition and were able to reduce post-ictal hypoalgesia. Central administration of naltrexone (a non-selective antagonist for opioid receptors), naloxonazine (a selective antagonist for µ1-opioid-receptors), methysergide (a non-selective antagonist for serotonergic receptors) or ketanserin (an antagonist for both α1-noradrenergic and 5-Hydroxytryptamine(HT)2A/2C receptors) at 5.0µg/0.2µL, R-96544 (a 5-HT2A receptor selective antagonist) at 10nM/0.2µL, or RS-102221 (a 5-HT2C receptor selective antagonist) at 0.15µg/0.2µL into the LC also decreased post-ictal hypoalgesia. The data presented here suggest that the post-ictal antinociception mechanism involves the µ1-opiod, 5-HT2A- and 5-HT2C-serotonergic, and α1-noradrenergic receptors in the LC.


Subject(s)
Locus Coeruleus/physiopathology , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Opioid, mu/metabolism , Seizures/physiopathology , Animals , Male , Pain Threshold/physiology , Pentylenetetrazole/pharmacology , Rats, Wistar , Seizures/chemically induced
15.
Synapse ; 70(12): 519-530, 2016 12.
Article in English | MEDLINE | ID: mdl-27503688

ABSTRACT

Generalised tonic and tonic-clonic seizures are followed by significant increase in nociceptive thresholds in both laboratory animals and humans. The endogenous opioid peptides play a role in antinociceptive signalling, and the periaqueductal grey matter (PAG) is recruited to induce analgesia. Thus, the aim of this investigation was to evaluate the role of µ1 -opioid receptors in the dorsomedial (dm) and ventrolateral (vl) columns of PAG in post-ictal antinociception. Pentylenetetrazole (PTZ; 64 mg/kg), which is an ionotropic GABA-mediated Cl- influx antagonist, was intraperitoneally (IP) administered to induce tonic-clonic seizures in Wistar rats. The tail-flick test was used to measure the nociceptive threshold. Microinjections of naltrexone (5.0 µg/0.2 µL), which is a non-selective opioid receptor antagonist, in both dmPAG and vlPAG decreased the tonic-clonic seizure-induced antinociception in seizing animals from 10 to 120 min after seizures. Furthermore, microinjections of the µ1 -opioid receptor-selective antagonist naloxonazine (5.0 µg/0.2 µL) into the dmPAG decreased post-ictal antinociception immediately after convulsive reactions and from 10 to 90 min after seizures. However, vlPAG-pretreatment with naloxonazine at the same concentration decreased the post-ictal antinociception 30 min after the onset of tonic-clonic seizures and the nociceptive threshold returned to basal values 120 min after seizures. These findings indicate that µ1 -opioid receptor-signalling mechanisms in both dmPAG and vlPAG play a relevant role in the organisation of post-ictal antinociception. In addition, µ1 -opioid receptors in the dmPAG rather than in vlPAG seem to be more critically recruited during the antinociception induced by generalised tonic-clonic seizures.


Subject(s)
Nociception , Periaqueductal Gray/metabolism , Receptors, Opioid, mu/metabolism , Animals , Male , Naloxone/analogs & derivatives , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pain Threshold , Pentylenetetrazole/toxicity , Periaqueductal Gray/physiology , Rats , Rats, Wistar , Receptors, Opioid, mu/antagonists & inhibitors , Seizures/etiology , Seizures/physiopathology
16.
Behav Brain Res ; 298(Pt B): 65-77, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26545831

ABSTRACT

Inhibition of GABAergic neural inputs to dorsal columns of the periaqueductal grey matter (dPAG), posterior (PH) and dorsomedial (DMH) hypothalamic nuclei elicits distinct types of escape behavioural reactions. To differentiate between the variety and intensity of panic-related behaviours, the pattern of defensive behaviours evoked by blockade of GABAA receptors in the DMH, PH and dPAG were compared in a circular open-field test and in a recently designed polygonal arena. In the circular open-field, the defensive behaviours induced by microinjection of bicuculline into DMH and PH were characterised by defensive alertness behaviour and vertical jumps preceded by rearing exploratory behaviour. On the other hand, explosive escape responses interspersed with horizontal jumps and freezing were observed after the blockade of GABAA receptors on dPAG neurons. In the polygonal arena apparatus, the escape response produced by GABAergic inhibition of DMH and PH neurons was directed towards the burrow. In contrast, the blockade of GABAA receptors in dPAG evoked non-oriented escape behaviour characterised by vigorous running and horizontal jumps in the arena. Our findings support the hypothesis that the hypothalamic nuclei organise oriented escape behavioural responses whereas non-oriented escape is elaborated by dPAG neurons. Additionally, the polygonal arena with a burrow made it easy to discriminate and characterise these two different patterns of escape behavioural responses. In this sense, the polygonal arena with a burrow can be considered a good methodological tool to discriminate between these two different patterns of escape behavioural responses and is very useful as a new experimental animal model of panic attacks.


Subject(s)
Escape Reaction , Housing, Animal , Psychological Tests , Animals , Bicuculline/administration & dosage , Equipment Design , Escape Reaction/drug effects , Escape Reaction/physiology , GABA-A Receptor Antagonists/administration & dosage , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Microinjections , Motor Activity/drug effects , Motor Activity/physiology , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Rats, Wistar , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism
17.
Cereb Cortex ; 24(6): 1518-28, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23349224

ABSTRACT

The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.


Subject(s)
Behavior, Animal/physiology , Fear/physiology , Hypothalamus, Middle/physiology , Pain Perception/physiology , Panic/physiology , Prefrontal Cortex/physiology , Animals , Behavior, Animal/drug effects , Bicuculline/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Fear/drug effects , GABA-A Receptor Antagonists/pharmacology , Hypothalamus, Middle/drug effects , Isoquinolines/pharmacology , Male , Nociceptive Pain/drug therapy , Nociceptive Pain/physiopathology , Pain Perception/drug effects , Panic/drug effects , Prefrontal Cortex/drug effects , Quinoxalines/pharmacology , Rats, Wistar , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/metabolism , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
18.
Synapse ; 68(1): 16-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23913301

ABSTRACT

The periaqueductal gray matter (PAG) consists in a brainstem structure rich in 5-hydroxytryptamine (5-HT) inputs related to the modulation of pain. The involvement of each of the serotonergic receptor subtypes found in PAG columns, such as the dorsomedial (dmPAG) and the ventrolateral (vlPAG) columns, regarding post-ictal antinociception have not been elucidated. The present work investigated the participation of the dmPAG and vlPAG columns in seizure-induced antinociception. Specifically, we studied the involvement of serotonergic neurotransmission in these columns on antinociceptive responses that follow tonic-clonic epileptic reactions induced by pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl(-) influx antagonist. Microinjections of cobalt chloride (1.0 mM CoCl2 /0.2 µL) into the dmPAG and vlPAG caused an intermittent local synaptic inhibition and decreased post-ictal antinociception that had been recorded at various time points after seizures. Pretreatments of the dmPAG or the vlPAG columns with the nonselective serotonergic receptors antagonist methysergide (5.0 µg/0.2 µL) or intramesencephalic microinjections of ketanserin (5.0 µg/0.2 µL), a serotonergic antagonist with more affinity to 5-HT2A/2C receptors, decreased tonic-clonic seizure-induced antinociception. Both dmPAG and vlPAG treatment with either the 5-HT2A receptor selective antagonist R-96544 (10 nM/0.2 µL), or the 5-HT2C receptors selective antagonist RS-102221 (0.15 µg/0.2 µL) also decrease post-ictal antinociception. These findings suggest that serotonergic neurotransmission, which recruits both 5-HT2A and 5-HT2C serotonergic receptors in dmPAG and vlPAG columns, plays a critical role in the elaboration of post-ictal antinociception.


Subject(s)
Nociception , Periaqueductal Gray/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Animals , Male , Organ Specificity , Periaqueductal Gray/physiology , Rats , Rats, Wistar , Seizures/chemically induced , Seizures/metabolism , Seizures/physiopathology , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Synaptic Transmission
19.
Brain Behav ; 3(3): 286-301, 2013 May.
Article in English | MEDLINE | ID: mdl-23785660

ABSTRACT

Several studies have suggested the involvement of the hippocampus in the elaboration of epilepsy. There is evidence that suggests the hippocampus plays an important role in the affective and motivational components of nociceptive perception. However, the exact nature of this involvement remains unclear. Therefore, the aim of this study was to determine the role of muscarinic and nicotinic cholinergic receptors in the dorsal hippocampus (dH) in the organization of postictal analgesia. In a neuroanatomical study, afferent connections were found from the somatosensory cortex, the medial septal area, the lateral septal area, the diagonal band of Broca, and the dentate gyrus to the dH; all these areas have been suggested to modulate convulsive activity. Outputs to the dH were also identified from the linear raphe nucleus, the median raphe nucleus (MdRN), the dorsal raphe nucleus, and the locus coeruleus. All these structures comprise the endogenous pain modulatory system and may be involved either in postictal pronociception or antinociception that is commonly reported by epileptic patients. dH-pretreatment with cobalt chloride (1.0 mmol/L CoCl2/0.2 µL) to transiently inhibit local synapses decreased postictal analgesia 10 min after the end of seizures. Pretreatment of the dH with either atropine or mecamylamine (1.0 µg/0.2 µL) attenuated the postictal antinociception 30 min after seizures, while the higher dose (5.0 µg/0.2 µL) decreased postictal analgesia immediately after the end of seizures. These findings suggest that the dH exerts a critical role in the organization of postictal analgesia and that muscarinic and nicotinic cholinergic receptor-mediated mechanisms in the dH are involved in the elaboration of antinociceptive processes induced by generalized tonic-clonic seizures.

20.
Eur J Pharmacol ; 698(1-3): 235-45, 2013 Jan 05.
Article in English | MEDLINE | ID: mdl-23397604

ABSTRACT

The chemical neuroanatomy and the effects of central administration of opioid antagonists on the innate fear-induced responses elicited by electrical (at escape behaviour threshold) stimulation of the midbrain tectum were determined. The aim of the present work was to investigate the interaction between the tecto-nigral endogenous opioid peptide-mediated disinhibitory pathways and nigro-tectal inhibitory links in the control of panic-like behaviour and their organisation in the continuum comprised by the deep layers of the superior colliculus (dlSC) and the dorsolateral columns of the periaqueductal grey matter (dlPAG). Beta-endorphin-labelled neurons and fibres were found in the dorsal midbrain and also in the substantia nigra. Opioid varicose fibres and terminal buttons were widely distributed in PAG columns and in all substantia nigra subdivisions. Microinjections of naltrexone (a non-selective opioid receptor antagonist; 5.0 µg/0.2 µl) or nor-binaltorphimine (a selective κ-opioid receptor antagonist; 5.0 µg/0.2 µl) in the dlSC/dlPAG continuum, in independent groups of animals, induced significant increases in the escape thresholds for midbrain tectum electrical stimulation. The microinjection of naltrexone or nor-binaltorphimine into the SNpr also increased the escape behaviour threshold for electrical stimulation of dlSC/dlPAG. These morphological and neuropharmacological findings support previous evidence from our team for the role played by the interaction between opioidergic and GABAergic mechanisms in the modulation of innate fear-induced responses. The present data offer a neuroanatomical basis for both intratectal axo-axonic/pre-synaptic and tecto-nigral axo-somatic opioid inhibition of GABAergic nigro-tectal neurons that modulate the dorsal midbrain neurons related to the organisation of fear-related emotional responses.


Subject(s)
Mesencephalon/drug effects , Mesencephalon/metabolism , Neuroanatomy , Opioid Peptides/metabolism , Panic/drug effects , Receptors, Opioid, kappa/metabolism , Synaptic Transmission/drug effects , Animals , Electric Stimulation , Instinct , Male , Mesencephalon/cytology , Mesencephalon/physiology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Neurons/drug effects , Neurons/metabolism , Psychopharmacology , Rats , Rats, Wistar , Receptors, Opioid, kappa/antagonists & inhibitors , Substantia Nigra/cytology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/physiology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...