Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Fundam Clin Pharmacol ; 37(1): 163-173, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36082507

ABSTRACT

Chalcones are present in a wide variety of plants, having in their structure two aromatic rings that are linked together by a chain composed of three carbon atoms with α, ß-unsaturated to carbonyl system. Bacteria have several drug resistance mechanisms, among them the efflux pump; this mechanism, when active, is able to expel different compounds from inside bacterial cells. Several efflux pumps have already been identified for Staphylococcus aureus bacteria, including MepA and NorA. Many chalcones have been isolated and identified with various activities, such as antimicrobial. In view of this, this article aimed to evaluate the antibiotic modifying effect of chalcone (E)-1-(2-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one against S. aureus carrier of NorA and MepA efflux pump. Regarding the antibiotic, there was a synergism when associated with ciprofloxacin in SA-K2068 strain, showing this chalcone as an alternative to reverse the resistance to this medicine. The physicochemical properties calculated were fundamental in the description of the predicted pharmacokinetic properties. Despite the mutagenic risk caused by the metabolic activation of nitrochalcone, it is possible to notice a pharmacological principle in a longer half-life for the performance of biological activities. The compound has a good bioavailability, as it is highly absorbed in the intestine and easily transported by plasma proteins, in addition to not presenting neurotoxic, hepatotoxic, and cardiotoxic damage.


Subject(s)
Chalcone , Chalcones , Staphylococcal Infections , Humans , Norfloxacin/pharmacology , Ciprofloxacin/pharmacology , Staphylococcus aureus , Ethidium/metabolism , Ethidium/pharmacology , Chalcone/pharmacology , Chalcone/metabolism , Chalcones/pharmacology , Multidrug Resistance-Associated Proteins , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
2.
J Bioenerg Biomembr ; 53(2): 157-167, 2021 04.
Article in English | MEDLINE | ID: mdl-33683535

ABSTRACT

The objective of this work was to evaluate the inhibitory effect of quercetin on S. aureus Efflux Pumps. The MIC of Quercetin was evaluated through the broth microdilution method, as well as the Efflux Pump inhibition assay through the method of reducing the antibiotic minimum inhibitory concentration as well as that of ethidium bromide. The in silico approach through bioinformatics was performed to demonstrate the molecular mechanism of interaction of the substrate and the binding cavity. The Quercetin inhibition concentration was not clinically relevant. With respect to the reversal of bacterial resistance effect by efflux pump inhibition, this effect was observed with the strains carrying the TetK and NorA pumps. Regarding the interaction between the Quercetin complex and the NorA pump, the extra stability was provided by hydrogen bonds produced by the hydroxyl group.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Quercetin/therapeutic use , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Quercetin/pharmacology
3.
Environ Geochem Health ; 43(6): 2433-2442, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32488795

ABSTRACT

Human activities, especially in industry, have contributed to soil contamination with heavy or toxic metals. The objective of this study was to determine the chelating effect and antioxidant activity of pyrogallol, as well as to evaluate its cytoprotective activity in prokaryotic and eukaryotic models, animal and plant, respectively, against toxic mercury chloride action. Antioxidant activity was determined by DPPH where pyrogallol showed considerable action, chelating even iron ions. For the microbiologic activity assays, microdilution was performed to obtain the minimal inhibitory concentration, minimum bactericidal and minimum fungicide concentration, from which the sub-inhibitory concentrations were determined. The product did not conferred cytoprotection to the tested bacteria and fungi. To evaluate plant cytoprotection, Lactuta sativa seeds were used together with the product at a sub-allelopathic concentration with different HgCl2 concentrations. In this case, the tannin conferred cytoprotection to the plant model, allowing the best growth and development of caulicles and radicles, thus preserving tissues necessary for plant survival. From the results, it is observable that pyrogallol possesses cytoprotective action in the eukaryotic plant model, this action being useful as an alternative which favors the growth of plants in contaminated areas, as the recovering of crop fields or reforestation projects.


Subject(s)
Lactuca/drug effects , Mercuric Chloride/toxicity , Pyrogallol/pharmacology , Spectroscopy, Fourier Transform Infrared/methods , Allelopathy , Antioxidants/chemistry , Antioxidants/pharmacology , Chelating Agents/chemistry , Chelating Agents/pharmacology , Germination/drug effects , Iron Chelating Agents/chemistry , Iron Chelating Agents/pharmacology , Mercuric Chloride/chemistry , Microbial Sensitivity Tests , Pyrogallol/chemistry , Seeds/drug effects , Soil Pollutants/toxicity
4.
Environ Geochem Health ; 43(4): 1609-1616, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32130595

ABSTRACT

Mercury is widely found in nature, however, in low concentrations, but anthropological activities have increased its concentration considerably. This causes various environmental hazards and human health. Many substances are capable of reversing the toxicity of mercuric chloride in the environment. The aim of the present study was to determine the chelating effect of vanillin, as well as to evaluate its capacity for cytoprotection in prokaryotic and eukaryotic plant models. Chelating activity was determined from vanillin's ability to reduce iron III ions. To evaluate cytoprotection in a unicellular prokaryotic and eukaryotic model, Escherichia coli and Candida albicans, respectively, were used. And to evaluate the cytoprotective activity in vegetables, lettuce seeds were submitted to different concentrations of mercuric chloride and its association with the sub-allelopathic concentration of vanillin (32 µg/mL). Vanillin has been found to have antioxidant activity as it can reduce iron III ions. The use of vanillin also allows for better growth and development of Lactuca sativa seed root and stem, also allowing better preservation of its biochemical structures. These results are quite important, as environmental contamination by heavy metals has increased dramatically and finding a viable alternative to grow vegetables in contaminated areas is very valid.


Subject(s)
Benzaldehydes/chemistry , Biodegradation, Environmental , Chelating Agents/chemistry , Mercuric Chloride/toxicity , Antioxidants/chemistry , Ferric Compounds/chemistry , Humans , Lactuca , Mercury , Metals, Heavy/analysis , Seeds/chemistry , Vegetables
5.
Z Naturforsch C J Biosci ; 76(1-2): 35-42, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-32673283

ABSTRACT

The objective of this study was to determine the chemical profile and to evaluate the antibacterial activity of the essential oils of Piper species and modulation of the antibiotic activity, using the microdilution method to determine the minimum inhibitory concentration. The chemical components were characterized by gas chromatography coupled to mass spectrometry, which revealed ß-copaen-4-α-ol (31.38%), spathulenol (25.92%), and germacrene B (21.53%) as major constituents of the essential oils of Piper arboreum, Piper aduncum, and Piper gaudichaudianum, respectively. The essential oils analyzed in this study did not present a clinically relevant activity against standard and multiresistant Escherichia coli. However, in the case of multiresistant Staphylococcus aureus, there was a significant activity, corroborating with reports in the literature, where Gram-positive bacteria are more susceptible to antimicrobial activity. The essential oils modulated the effect of the antibiotics norfloxacin and gentamicin, having on the latter greater modulating effect; however, for erythromycin, no statistically significant effect was observed. In conclusion, the results obtained in this study demonstrated that the essential oils of the analyzed Piper species present an inhibitory effect against S. aureus and modulate antibiotic activity, most of which presents synergistic activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Oils, Volatile/chemistry , Piper/chemistry , Plant Oils/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Sesquiterpenes/analysis , Sesquiterpenes, Germacrane/analysis , Staphylococcus aureus/drug effects
6.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 127-132, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32583777

ABSTRACT

The aim of this study was to evaluate the antifungal and modulatory potential of the Ziziphus joazeiro bark and leaf extracts, both in isolation and in association with fluconazole, against resistant species from the Candida genus. Antifungal assays were used to determine the half maximal inhibitory concentration (IC50) of the extract in isolation and in combination with fluconazole using the broth microdilution method and spectrophotometric readings, followed by verification of the minimum fungicidal concentration by solid medium subculture. According to the cell viability curve, both extracts inhibited fungal growth in a concentration dependent manner, in addition to showing inhibitory concentrations similar to fluconazole. However, the extracts behaved in a fungistatic manner with minimum inhibitory concentration > 8.19 mg/mL and IC50 values ranging from 0.450 mg/mL to 9 mg/mL. The minimum inhibitory concentration for both extracts decreased when in combination with fluconazole, with the AEL standing out against Candida albicans URM 4387, displaying an IC50 equal to that of fluconazole (0.002 mg/mL). Nevertheless, fluconazole antagonism was observed against the tested strains. Overall, the evaluation of both extracts against Candida spp. presented inhibitory concentration values greater than fluconazole. Moreover, despite these being chemically complex crude extracts, they did demonstrate antifungal effects and properties that concur with their ethno-biological aspect.


Subject(s)
Antifungal Agents/pharmacology , Metabolome , Phytochemicals/pharmacology , Ziziphus/metabolism , Antifungal Agents/chemistry , Candida/drug effects , Chromatography, High Pressure Liquid , Fluconazole/pharmacology , Inhibitory Concentration 50 , Microbial Viability/drug effects , Phytochemicals/chemistry , Plant Extracts/pharmacology , Water
7.
Eur J Pharm Sci ; 128: 158-161, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30508582

ABSTRACT

With the increase in bacterial resistance to antibiotics, many studies have been directed towards finding new agents with antibacterial activity, such as studies with natural products. These products can have antibacterial activity such as d-limonene as described in the literature. The aim of this study was to evaluate the antibacterial activity of d-limonene, isolated and complexed with ß-cyclodextrin, and to evaluate its potentiating activity of different antibiotic classes. Antibacterial activity was determined by the broth microdilution method, obtaining in this way the Minimal Inhibitory Concentration (MIC), with the antibiotic modulatory activity being obtained using a sub-inhibitory concentration (MIC/8). d-Limonene showed a MIC equal to 256 µg/mL against standard S. aureus and 512 µg/mL against resistant P. aeruginosa. In the gentamicin modulatory activity, the isolated d-limonene presented synergism against S. aureus and E. coli bacteria. Thus, d-limonene showed relevant clinical antibacterial activity, for both Gram-positive and Gram-negative bacteria as well as a synergistic effect when associated with gentamicin. These results are promising in the combat against bacterial resistance, however further studies are needed to better elucidate the mechanisms of action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Limonene/chemistry , Limonene/pharmacology , beta-Cyclodextrins/chemistry , Bacteria/drug effects
8.
Article in English | MEDLINE | ID: mdl-30017074

ABSTRACT

Staphylococcus aureus has been reported as one of the most difficult to treat. In the search for new treatment alternatives, isolated plant substances such as phenolic compounds, have demonstrated the ability to reverse bacterial resistance. The present study aims to evaluate the inhibitory action of caffeic acid and gallic acid on efflux pumps from S. aureus resistant strains. The broth microdilution assay was carried out to obtain the MICs of caffeic acid and gallic acid while the efflux pump inhibition test was assessed through the reduction of the minimum inhibitory concentration of the antibiotic and ethidium bromide. In addition, in silico theoretical parameters were analyzed to determine the theoretical efficacy of the compound and its free energy of interaction. In the results, the inhibition concentration of the two compounds did not certify clinical relevance with 1024 µg/mL for all strains. In the efflux pump inhibition effect, caffeic acid inhibited the MrsA pumps of the strain RN-4220 and NorA of the strain 1199B. Caffeic acid showed greater efficacy in the docking model, in agreement with the demonstrated experimental efficacy. Isolated compounds can be indicated as efficient options in the inhibition of resistance mechanisms.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Caffeic Acids/pharmacology , Drug Resistance, Bacterial/drug effects , Erythromycin/pharmacology , Gallic Acid/pharmacology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Norfloxacin/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Caffeic Acids/chemistry , Drug Resistance, Bacterial/genetics , Erythromycin/chemistry , Ethidium/chemistry , Gallic Acid/chemistry , Genes, MDR/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Norfloxacin/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...