Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-37259436

ABSTRACT

Human beings are actively exposed to ultraviolet (UV) radiation, which is associated with skin cancer. This has encouraged the continuous search for more effective and safer photoprotective formulations. Along with the application of traditional organic sunscreens, there is a growing interest in "green products" containing natural compounds such as plant extracts and oils. This trend is combined with the use of nanotechnology as a tool for optimizing the vehicles of such compounds. Nanoemulsions (NEs) are suitable for the encapsulation of natural compounds, which improves topical treatment. Therefore, we have developed oil-in-water (O/W) nanoemulsions containing 3% buriti oil (BO), incorporated in a 10% vegetal extract of Aloe vera (AV) by means of ultrasonic processing to improve the chemical characteristics of this component and, consequently, its efficacy and safety in pharmaceutical and cosmetic formulations. The composition of the formulation was initially defined in a preliminary study on surfactants where the concentrations of Tween® 80 and Span® 20 were evaluated in relation to particle size and the polydispersity index (PDI). The nanoemulsion was prepared and then chemical sunscreens were incorporated with the aim of developing a sunscreen nanoemulsion called NE-A19. This nanoemulsion was found to be the best formulation due to its stability, droplet size (146.80 ± 2.74), and PDI (0.302 ± 0.088), with a monomodal size distribution. The stability was evaluated over 90 days and showed a low growth in particle size at the end of the study. NE-A19 exhibited good viscosity and organoleptic properties, in addition to an occlusion factor indicating an interesting and higher water holding capacity when compared with a NE without AV (p < 0.05). The in vitro efficacy and safety studies of NE-19A were promising. Its average in vitro sun protection factor value was 49, with a critical wavelength (λc) of 369.7 nm, satisfactory UVA protection, and a UVA/UVB ratio of 0.40, indicating broad spectrum protection against UVA and UVB radiation. Furthermore, NE-19A displayed a good safety profile in dermal keratinocytes. It can be concluded that NE-19A is a promising formulation for carrying natural products, such as buriti oil and AV, associated with synthetic filters in lower concentrations.

2.
Plants (Basel) ; 12(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903915

ABSTRACT

Vegetable oils are among the most important traditional resources of Amazonia. Oleoresins are a type of oil that have interesting characteristics and highly bioactive properties with pharmacological potential. Oleoresins produced in the trunks of Copaifera (Fabaceae) spp. trees, known as copaiba oils, are made up of terpenes from the sesquiterpene (volatile) and diterpene (resinous) classes, but in amounts that vary between species and depending on several factors, such as soil type. Despite being used for medicinal purposes, via topical and oral application, the toxic effects of copaiba oils and their constituents are little known. The current paper reviews the toxicological studies, both in vitro and in vivo, described in the literature for copaiba oils, as well as the cytotoxic characteristics (against microorganisms and tumor cells) in in silico, in vitro and in vivo models for the sesquiterpenes and diterpenes that make up these oils.

3.
Int J Cosmet Sci ; 45(2): 255-265, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36752036

ABSTRACT

OBJECTIVE: The objective of this work was to develop a self-emulsifying drug delivery system (SEDDS) containing caffeine for the treatment of cellulite. METHODS: SEDDS were prepared using the solution method. 0.5% (w/v) caffeine was added to the previously selected excipients. The system was characterized by droplet size, zeta potential, emulsification time and long-term stability. In vitro release and skin permeation were investigated using Franz-type diffusion cells. The cytotoxicity was evaluated on normal human keratinocytes. RESULTS: Caffeine SEDDS were thermodynamically stable, with a zeta potential less than - 22 mV and droplet size around 30 nm, and were long-term stable. The permeation study showed that the formulation promoted caffeine accumulation in the skin layers, suggesting an increase in local circulation. Cytotoxicity studies on HaCaT cells were not conclusive as the surfactant used indicated false-positive results due to its high molar mass. CONCLUSION: It was possible to obtain a stable SEDDS that could cause an increase in blood flow in the applied area, resulting in cellulite reduction.


OBJECTIF: L'objectif de ce travail était de développer un système d'administration de médicaments auto-émulsifiants (SEDDS) contenant de la caféine pour le traitement de la cellulite. MÉTHODES: Les SEDDS ont été préparés par la méthode en solution. 0,5 % (p/v) de caféine a été ajouté aux excipients préalablement sélectionnés. Le système a été caractérisé par la taille des gouttelettes, le potentiel zêta, le temps d'émulsification et la stabilité à long terme. La libération in vitro et la perméation cutanée ont été étudiées dans des cellules de diffusion de type Franz. La cytotoxicité était évaluée sur des kératinocytes humains normaux. RÉSULTATS: Les SEDDS de caféine étaient thermodynamiquement stables, avec un potentiel Zeta inférieur à -22 mV et une taille de gouttelettes d'environ 30 nm, et stables à long terme. L'étude de perméation a montré que les formulations favorisent l'accumulation de caféine dans les couches de la peau, suggérant une augmentation de la circulation locale. Les études de cytotoxicité sur les cellules HaCaT n'ont pas été concluantes car le surfactant utilisé indique des résultats faussement positifs dus à une masse molaire élevée. CONCLUSION: Il a été possible d'obtenir un SEDDS stable qui peut provoquer une augmentation du flux sanguin dans la zone appliquée, entraînant une réduction de la cellulite.


Subject(s)
Caffeine , Cellulite , Humans , Caffeine/pharmacology , Emulsions , Drug Delivery Systems/methods , Surface-Active Agents , Solubility , Emulsifying Agents
4.
Int J Nanomedicine ; 13: 2827-2837, 2018.
Article in English | MEDLINE | ID: mdl-29785109

ABSTRACT

BACKGROUND: Propranolol (PPN) is a therapeutic option for the treatment of infantile hemangiomas. This study aimed at the development of nanoemulsion (NE) containing 1% PPN, characterization of the system, and safety studies based on ex vivo permeation, cytotoxicity, and biodistribution in vivo. METHODS: The formulation was developed and characterized in relation to the droplet size, polydispersity index (PDI), pH, zeta potential, and electronic microscopy. Ex vivo permeation studies were used to evaluate the cutaneous retention of PPN in the epidermis and dermis. Cytotoxicity studies were performed in fibroblasts, macrophages, and keratinocytes. In vivo biodistribution assay of the formulations was performed by means of labeling with technetium-99m. RESULTS: NE1 exhibited droplet size of 26 nm, PDI <0.4, pH compatible with the skin, and zeta potential of -20 mV, which possibly contributes to the stability. Electron microscopy showed that the NE presented droplets of nanometric size and spherical shape. NE1 provided excellent stability for PPN. In the ex vivo cutaneous permeation assay, the NE provided satisfactory PPN retention particularly in the dermis, which is the site of drug action. In addition, NE1 promoted cutaneous permeation of the PPN in small amount. In vivo biodistribution showed that the radiolabeled formulation remained in the skin and a small amount reached the bloodstream. NE1 presented low cytotoxicity to fibroblasts, macrophages, and keratinocytes in the concentrations evaluated in the cytotoxicity assay. CONCLUSION: We concluded that the formulation is safe for skin administration; however, cutaneous irritation studies should be performed to confirm the safety of the formulation before clinical studies in patients with infantile hemangiomas.


Subject(s)
Drug Delivery Systems/methods , Emulsions/administration & dosage , Nanostructures/administration & dosage , Propranolol/administration & dosage , Skin/drug effects , Administration, Cutaneous , Administration, Topical , Animals , Cells, Cultured , Emulsions/chemistry , Emulsions/pharmacokinetics , Epidermis/metabolism , Humans , Hydrogen-Ion Concentration , Male , Nanostructures/chemistry , Propranolol/pharmacokinetics , Rats, Wistar , Skin/cytology , Skin Absorption , Sus scrofa , Technetium , Tissue Distribution
5.
Int J Nanomedicine ; 8: 4689-701, 2013.
Article in English | MEDLINE | ID: mdl-24376350

ABSTRACT

UNLABELLED: Solar radiation causes damage to human skin, and photoprotection is the main way to prevent these harmful effects. The development of sunscreen formulations containing nanosystems is of great interest in the pharmaceutical and cosmetic industries because of the many potential benefits. This study aimed to develop and evaluate an octyl methoxycinnamate (OMC) liposomal nanosystem (liposome/OMC) to obtain a sunscreen formulation with improved safety and efficacy by retaining OMC for longer on the stratum corneum. METHODS: The liposome/OMC nanostructure obtained was tested for enzymatic hydrolysis with lipase from Rhizomucor miehei and biodistribution with liposomes labeled with technetium-99m. The liposome/OMC formulation was then incorporated in a gel formulation and tested for ocular irritation using the hen's egg test-chorio-allantoic membrane (HET-CAM) assay, in vitro and in vivo sun protection factor, in vitro release profile, skin biometrics, and in vivo tape stripping. RESULTS: The liposome/OMC nanosystem was not hydrolyzed from R. miehei by lipase. In the biodistribution assay, the liposome/OMC formulation labeled with technetium-99m had mainly deposited in the skin, while for OMC the main organ was the liver, showing that the liposome had higher affinity for the skin than OMC. The liposome/OMC formulation was classified as nonirritating in the HET-CAM test, indicating good histocompatibility. The formulation containing liposome/OMC had a higher in vivo solar photoprotection factor, but did not show increased water resistance. Inclusion in liposomes was able to slow down the release of OMC from the formulation, with a lower steady-state flux (3.9 ± 0.33 µg/cm(2)/hour) compared with the conventional formulation (6.3 ± 1.21 µg/cm(2)/hour). The stripping method showed increased uptake of OMC in the stratum corneum, giving an amount of 22.64 ± 7.55 µg/cm(2) of OMC, which was higher than the amount found for the conventional formulation (14.57 ± 2.30 µg/cm(2)). CONCLUSION: These results indicate that liposomes are superior carriers for OMC, and confer greater safety and efficacy to sunscreen formulations.


Subject(s)
Cinnamates/pharmacokinetics , Liposomes/pharmacokinetics , Organotechnetium Compounds/pharmacokinetics , Sunscreening Agents/pharmacokinetics , Adult , Animals , Cinnamates/chemistry , Female , Humans , Hydrolysis , Liposomes/chemistry , Middle Aged , Organotechnetium Compounds/chemistry , Rats , Rats, Wistar , Skin/chemistry , Sunscreening Agents/chemistry , Surgical Tape , Tissue Distribution , Young Adult
6.
Drug Dev Ind Pharm ; 39(7): 1098-106, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22901029

ABSTRACT

Nifedipine (NFD) has been used for the treatment of cutaneous lesions caused by peripheral vascular disease and diabetic ulcers. NFD was formulated at 8% in three semi-solid formulations: Polaxamer 407 Lecithin Organogel (PLO), PLO plus Transcutol(®), and an oil-in-water (o/w) emulsion. In vitro release and permeation tests were carried out using a synthetic (cellulose acetate) or natural membrane (pig ear skin), respectively, mounted in a Franz-type diffusion cell at 37°C in a constant water bath. As a receptor solution, isotonic phosphate buffer at pH 7.4 was used. All samples were analyzed by high-performance liquid chromatography by employing a previously validated method. The drug flow values were 6.126 ± 0.288, 4.030 ± 0.081, and 6.660 ± 0.254 µg/cm(2)/h for PLO, PLO plus Transcutol(®), and o/w emulsion, respectively. The three formulations did not show significant differences in drug flow, considering p > 0.05. Furthermore, their penetration profiles in both the epidermis and dermis were statistically different. Thus, the incorporation of NFD in PLO, PLO plus Transcutol(®), and o/w emulsion changed the drug thermodynamic activity, as expected. In addition, Transcutol(®) increased the solubility of NFD in the formulation and promoted its penetration in both the epidermis and dermis.


Subject(s)
Calcium Channel Blockers/chemistry , Nifedipine/chemistry , Peripheral Vascular Diseases/drug therapy , Skin/metabolism , Administration, Topical , Animals , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Drug Stability , Gels , Hydrogen-Ion Concentration , Lecithins/chemistry , Nifedipine/pharmacokinetics , Permeability , Poloxamer/chemistry , Solubility , Swine
7.
J Nanosci Nanotechnol ; 12(9): 7155-66, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23035447

ABSTRACT

Ultraviolet radiation can bring both harm and benefits to human health. Among those harms are erythemas, photosensitivity, photoaging, and the most worrying, skin cancer. Nanoencapsulation of sunscreen agents (SA) by using a biocompatible and biodegradable polymer such as poly(epsilon-caprolactone) (PCL) is advantageous as it increases the retention of UV absorbers in the skin, avoids systemic absorption, and consequently, improves water resistance and stability of the preparation. The aim of this work is to develop, characterize, and study the encapsulation of 3 different SA: 2-ethylhexyl-p-methoxycinnamate, benzophenone-3, and octocrylene in PCL nanoparticles (Nps). Nps were prepared by the solvent emulsification and evaporation method. The process yield was calculated, and the Nps were characterized in terms of size, polydispersity index (PI), morphology, zeta potential (ZP), encapsulation efficiency (EE) (%), and sunscreen agent content (SAC). The final formulations were submitted to the hen's egg test-chorioallantoic membrane (HET-CAM), chorioallantoic membrane-trypan blue staining (CAM-TBS), red blood cell (RBC), Draize tests, in vitro release, in vitro sun protection factor (SPF), UVA protection factor (PF-UVA), and photostability. All the Nps were in the nanometric scale. PI showed monodisperse systems. ZP became more negative as the Np were lyophilized and were added to the formulations. EE varied from 84 to 90%. The SAC went from 44 to 65 microg of sunscreen agents by milligram of Np. The process yield went from 60 to 76%. Nps were predominantly spherical and elliptical forms. The addition of Np diminished the release of the SA. The SPF increased with Np presence and helped to maintain the PF-UVA after irradiation. The HET-CAM assay evaluated the formulation as slightly irritant, CAM-TBS and RBC tests as non irritant, and the Draize test as moderately irritant.


Subject(s)
Acrylates/analysis , Benzophenones/analysis , Cinnamates/analysis , Nanoparticles , Polyesters/pharmacology , Sunscreening Agents/pharmacology , Animals , Chick Embryo , Cosmetics , Eye/drug effects , Irritants/chemistry , Irritants/pharmacology , Microscopy, Electron, Transmission , Polyesters/chemistry , Rabbits , Sunscreening Agents/chemistry , Ultraviolet Rays
8.
Int J Nanomedicine ; 7: 3045-58, 2012.
Article in English | MEDLINE | ID: mdl-22787399

ABSTRACT

PURPOSE: Awareness of the harmful effects of ultraviolet radiation has led to the increasing use of sunscreens, thus, the development of safe and effective antisolar preparations is important. The inclusion of sunscreen molecules in different release systems, like liposomes (lipo) and cyclodextrins (CD) is therefore required. METHODS: The in vivo sun protection factor (SPF), water resistance, and in vitro transdermal penetration test of octyl p-methoxycinnamate (OMC) in different dispersions, such as OMC encapsulated in liposomes (lipo/OMC), OMC encapsulated in ß-cyclodextrins (ß-CD/OMC), OMC encapsulated in both release systems (lipo/OMC and ß-CD/OMC), and an OMC-free formulation were determined. RESULTS: Although the formulation containing only the lipo/OMC system revealed high value of in vivo SPF (11.0 ± 1.3) and water resistance (SPF = 10.3 ± 2.2), the formulation containing both release systems (lipo/OMC + ß-cyclodextrin/OMC) showed the best result in the in vivo SPF test (11.6 ± 1.6). In the penetration test, the formulation containing the lipo/OMC system had better performance, since a high amount of OMC in the epidermis (18.04 ± 1.17 µg) and a low amount of OMC in the dermis (9.4 ± 2.36 µg) were observed. These results suggest that liposomes interact with the cells of the stratum corneum, promoting retention of OMC in this layer. CONCLUSION: According to our study, the lipo/OMC system is the most advantageous release system, due to its ability to both increase the amount of OMC in the epidermis and decrease the risk of percutaneous absorption.


Subject(s)
Cinnamates/chemistry , Liposomes/chemistry , Sunscreening Agents/chemistry , beta-Cyclodextrins/chemistry , Adult , Analysis of Variance , Animals , Cinnamates/pharmacokinetics , Cinnamates/pharmacology , Female , Histocytochemistry , Humans , Liposomes/pharmacology , Skin/drug effects , Skin/metabolism , Skin Absorption/drug effects , Sun Protection Factor , Sunscreening Agents/pharmacology , Swine , Ultraviolet Rays , beta-Cyclodextrins/pharmacology
9.
Drug Dev Ind Pharm ; 37(5): 569-75, 2011 May.
Article in English | MEDLINE | ID: mdl-21128702

ABSTRACT

Topical photodynamic therapy with zinc phthalocyanine (ZnPc), second-generation photosensitizer, can be an alternative method for the treatment of skin cancer. However, ZnPc has poor penetration in the skin. This study was aimed at investigating whether the presence of oleic acid (chemical enhancer) in propylene glycol can improve the topical delivery of ZnPc. The topical (to the skin) and transdermal (across the skin) delivery of ZnPc were evaluated in vitro using suine ear skin mounted in Franz diffusion cell. Photosensitizer was quantified by fluorescence emission, which is a sensitive and selective method. At 5 and 10%, oleic acid increased the topical and transdermal delivery significantly. When the concentration of oleic acid was further increased (20-60% w/w), the topical delivery of ZnPc was still elevated, but its transdermal delivery was substantially reduced. It was concluded that oleic acid (in propylene glycol formulations) can promote the topical delivery of ZnPc, with reduced transdermal delivery. This approach can be effective for the treatment of skin cancer by topical photodynamic therapy.


Subject(s)
Drug Delivery Systems/methods , Indoles/administration & dosage , Indoles/chemistry , Oleic Acid/administration & dosage , Oleic Acid/chemistry , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemistry , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Administration, Cutaneous , Administration, Topical , Animals , Chemistry, Pharmaceutical/methods , Drug Stability , Ear, External/metabolism , Indoles/pharmacokinetics , Isoindoles , Oleic Acid/pharmacokinetics , Organometallic Compounds/pharmacokinetics , Permeability , Photochemotherapy/methods , Photosensitizing Agents/pharmacokinetics , Propylene Glycol/chemistry , Skin/drug effects , Skin/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Swine , Zinc Compounds
10.
Eur J Pharm Sci ; 25(1): 67-72, 2005 May.
Article in English | MEDLINE | ID: mdl-15854802

ABSTRACT

Glyceryl esters of p-methoxycinnamic acid, 1,3-dipalmitoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol and 1,3-dioctanoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol were synthesised in an attempt to increase substantivity and decrease eventual undesirable effects of sunscreens of this class. To assess if the glyceryl esters could present a higher stability towards hydrolysis by lipases in the stratum corneum, hydrolysis rates were determined in vitro using a commercial fungal lipase from Rhizomucor miehei. Results presented herein show that the glyceryl esters have similar lambda(max) and epsilon values to sunscreens of the cinnamate class. The ester 1,3-dipalmitoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol presented a 2.8 times lower hydrolysis rate by lipase, in vitro, than the commercial sunscreen 2-ethylhexyl-p-methoxycinnamate (alkyl ester). This finding suggests that this triacylglycerol can possibly have a longer retention time in the skin and consequently promote a more intense and effective antisolar action than the commercial sunscreen.


Subject(s)
Cinnamates/chemical synthesis , Lipase/metabolism , Sunscreening Agents/chemical synthesis , Triglycerides/chemical synthesis , Cinnamates/chemistry , Cinnamates/metabolism , Humans , Hydrolysis , Skin/metabolism , Sunscreening Agents/chemistry , Sunscreening Agents/metabolism , Triglycerides/chemistry , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...