Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(14): eadd8553, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018407

ABSTRACT

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.


Subject(s)
Magnoliopsida , Humans , Phylogeny , Climate Change , Biodiversity
2.
Proc Natl Acad Sci U S A ; 119(25): e2026733119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35709320

ABSTRACT

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.


Subject(s)
Anthropogenic Effects , Biodiversity , Conservation of Natural Resources , Ecosystem , Trees , Conservation of Natural Resources/methods , Humans , Phylogeny , Trees/classification
3.
PLoS One ; 17(3): e0265959, 2022.
Article in English | MEDLINE | ID: mdl-35358252

ABSTRACT

This paper presents the software application ORION (All-sky camera geOmetry calibRation from star positIONs). This software has been developed with the aim of providing geometrical calibration to all-sky cameras, i.e. assess which sky coordinates (zenith and azimuth angles) correspond to each camera pixel. It is useful to locate bodies over the celestial vault, like stars and planets, in the camera images. The user needs to feed ORION with a set of cloud-free sky images captured at night-time for obtaining the calibration matrices. ORION searches the position of various stars in the sky images. This search can be automatic or manual. The sky coordinates of the stars and the corresponding pixel positions in the camera images are used together to determine the calibration matrices. The calibration is based on three parameters: the pixel position of the sky zenith in the image; the shift angle of the azimuth viewed by the camera with respect to the real North; and the relationship between the sky zenith angle and the pixel radial distance regards to the sky zenith in the image. In addition, ORION includes other features to facilitate its use, such as the check of the accuracy of the calibration. An example of ORION application is shown, obtaining the calibration matrices for a set of images and studying the accuracy of the calibration to predict a star position. Accuracy is about 9.0 arcmin for the analyzed example using a camera with average resolution of 5.4 arcmin/pixel (about 1.7 pixels).


Subject(s)
Software , Calibration
4.
Nat Commun ; 9(1): 4839, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446752

ABSTRACT

Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes.


Subject(s)
Conservation of Natural Resources/methods , Forestry/methods , Forests , Trees/physiology , Ecosystem , Europe , Forestry/trends , Humans
5.
PLoS One ; 10(9): e0139031, 2015.
Article in English | MEDLINE | ID: mdl-26397707

ABSTRACT

At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical "land management" practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species' habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species.


Subject(s)
Biodiversity , Forests , Plants , Agriculture , Ecosystem , Mediterranean Region
6.
PLoS One ; 10(3): e0118837, 2015.
Article in English | MEDLINE | ID: mdl-25790432

ABSTRACT

Predicting the capacity of ecosystems to absorb impacts from disturbance events (resilience), including land-use intensification and landscape fragmentation, is challenging in the face of global change. Little is known about the impacts of fragmentation on ecosystem functioning from a multi-dimensional perspective (multiple traits). This study used 58 500-m linear transects to quantify changes in the functional composition and resilience of vascular plant communities in response to an increase in landscape fragmentation in 18 natural scrubland fragments embedded within a matrix of abandoned crop fields in Cabo de Gata-Níjar Natural Park, Almería, Spain. Changes in functional community composition were measured using functional diversity indices (functional richness and functional dispersion) that were based on 12 plant traits. Resilience was evaluated using the functional redundancy and response diversity from the perspective of plant dispersal, which is important, particularly, in fragmented landscapes. Scrubland fragmentation was measured using the Integral Index of Connectivity (IIC). The functional richness of the plant communities was higher in the most fragmented scrubland. Conversely, the functional dispersion (i.e., spread) of trait values among species in the functional trait space was lower at the most fragmented sites; consequently, the ecological tolerance of the vegetation to scrubland fragmentation decreased. Classifying the plant species into four functional groups indicated that fragmentation favoured an increase in functional redundancy in the 'short basal annual forbs and perennial forbs' group, most of which are species adapted to degraded soils. An assessment based on the traits associated with plant dispersal indicated that the resilience of 'woody plants', an important component in the Mediterranean scrubland, and habitat fragmentation were negatively correlated; however, the correlation was positive in the 'short basal annual forbs and perennial forbs' and the 'grasses' groups.


Subject(s)
Adaptation, Biological/physiology , Ecosystem , Models, Biological , Plant Physiological Phenomena , Economic Development , Likelihood Functions , Spain , Species Specificity
7.
Environ Sci Process Impacts ; 15(2): 440-53, 2013 Feb.
Article in English | MEDLINE | ID: mdl-25208709

ABSTRACT

Atmospheric aerosol particles were collected at Camagüey, Cuba, during the period from February 2008 to April 2009 in order to know the particulate matter levels (PM) together with a general chemical and absorption characterization. The aerosols collection was carried out with a low volume particulate impactor twice a week. Gravimetric analysis of the particulate matter fractions PM10 and PM1 was carried out. An analysis of the eight major inorganic species (Na (+), K(+), Ca(2+), Mg(2+), NH4 (+), Cl(-), NO3(-) and SO4 (2-)) using ionic chromatography was conducted. The results were analyzed in two periods, the high aerosol concentration period (May to August) and the period with low aerosol concentration (the other months). During the high concentration period the average PM10 and PM1 levels were 35.11 µg m (-3) (std = 15.45 µg m(-3)) and 16.86 µg m(-3) (std = 6.14 µg m (-3)). During the low concentration period the average PM10 and PM1 levels were 23.13 µg m (-3) (std = 5.00 µg m(-3)) and 13.00 µg m(-3) (std = 4.02 µg m (-3)). For both periods, Cl(-), Na(+) and NO3 (-) are the predominant species in the coarse fraction (PM1-10), and SO 4(2-)and NH4(+) are the predominant species in the fine fraction (PM1). The spectral aerosol absorption coefficient, σ a, was measured for the wavelength range 400-700 nm with 10 nm steps. The σ a values were obtained with a filter transmission method for the fine fraction and were evaluated for 54 days covering a wide range of atmospheric conditions including a Saharan dust intrusion. σ a ranges from 8.5 M m(-1) to 34.5 M m(-1) at a wavelength of 550 nm, with a mean value of 18.7 M m (-1). The absorption Ångström parameter, αa, calculated for the pair of wavelengths (450/700 nm) presents a mean value of 0.33 (std = 0.19), which is a very low value comparing with those that can be found in the bibliography. Although the sampling period is short, these data represent the first evaluation of PM values with their chemical and optical absorption characterization in Cuba. In addition to the regional interest, the presented values can be directly used by those working with absorption, forcing by aerosols and radiative transfer calculations in general. Also, these data can be used as input in Global Climate Models.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring , Particulate Matter/analysis , Aerosols/analysis , Cuba , Optical Phenomena , Particle Size
8.
PLoS One ; 5(7): e11698, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20657734

ABSTRACT

BACKGROUND: Hierarchical partitioning (HP) is an analytical method of multiple regression that identifies the most likely causal factors while alleviating multicollinearity problems. Its use is increasing in ecology and conservation by its usefulness for complementing multiple regression analysis. A public-domain software "hier.part package" has been developed for running HP in R software. Its authors highlight a "minor rounding error" for hierarchies constructed from >9 variables, however potential bias by using this module has not yet been examined. Knowing this bias is pivotal because, for example, the ranking obtained in HP is being used as a criterion for establishing priorities of conservation. METHODOLOGY/PRINCIPAL FINDINGS: Using numerical simulations and two real examples, we assessed the robustness of this HP module in relation to the order the variables have in the analysis. Results indicated a considerable effect of the variable order on the amount of independent variance explained by predictors for models with >9 explanatory variables. For these models the nominal ranking of importance of the predictors changed with variable order, i.e. predictors declared important by its contribution in explaining the response variable frequently changed to be either most or less important with other variable orders. The probability of changing position of a variable was best explained by the difference in independent explanatory power between that variable and the previous one in the nominal ranking of importance. The lesser is this difference, the more likely is the change of position. CONCLUSIONS/SIGNIFICANCE: HP should be applied with caution when more than 9 explanatory variables are used to know ranking of covariate importance. The explained variance is not a useful parameter to use in models with more than 9 independent variables. The inconsistency in the results obtained by HP should be considered in future studies as well as in those already published. Some recommendations to improve the analysis with this HP module are given.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Software , Bias , Models, Theoretical
9.
Photochem Photobiol ; 82(2): 508-14, 2006.
Article in English | MEDLINE | ID: mdl-16613506

ABSTRACT

The calibration of the erythemal irradiance measured by a Yankee Environmental System (YES) UVB-1 biometer is presented using two methods of calibration with a wide range of experimental solar zenith angles (SZAs) and ozone values. The calibration is performed through simultaneous spectral measurements by a calibrated double-monochromator Brewer MK-III spectrophotometer at "El Arenosillo" station, located in southwestern Spain. Because the range of spectral measurements of the Brewer spectrophotometer is 290-363 nm, a previously validated radiative transfer model was used to account for the erythemal contribution between 363 and 400 nm. Both methods are recommended by the World Meteorological Organization and we present and discuss here a wide range of results and features given by modified procedures applied to these two general methods. As is well established, the calibration factor for this type of radiometric system is dependent on atmospheric conditions, the most important of which are the ozone content and the SZA. Although the first method is insensitive to these two factors, we analyze this behavior in terms of the range used for the SZA and the use of two different mathematical approaches for its determination. The second method shows the dependence on SZA and ozone content and, thus, a polynomial as a function of SZA or a matrix including SZA and ozone content were determined as general calibration factors for the UV radiometric system. We must note that the angular responses of the YES radiometer and Brewer spectroradiometer have not been considered, because of the difficulty in correcting them. The results show in detail the advantages and drawbacks (and the corresponding associated error) given by the different approaches used for the determination of these calibration coefficients.

10.
Photochem Photobiol ; 76(2): 181-7, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12194215

ABSTRACT

An analysis is made of experimental ultraviolet erythemal solar radiation data measured during the years 2000 and 2001 by the Spanish UV-B radiation evaluation and prediction network. This network consists of 16 Robertson-Berger type pyranometers for evaluating solar erythemal radiation and five Brewer spectroradiometers for evaluating the stratospheric ozone. On the basis of these data the Ultraviolet Index (UVI) was evaluated for the measuring stations that are located either in coastal regions or in the more densely populated regions inland on the Iberian Peninsula. It has been checked that in most cases the maximum irradiance values corresponded to solar noon, although there were exceptions that could be explained by cloudiness. The maximum experimental values of the UVI were around 9 during the summer, though frequently passing this value at the inland measurement stations. The annual accumulated dose of irradiation on a horizontal plane has also been studied, as well as the evolution through the year in units of energy, standard erythemal doses and minimum erythemal doses, according to different phototypes.


Subject(s)
Ultraviolet Rays/adverse effects , Erythema/etiology , Humans , Radiation Dosage , Radiometry , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...