Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 120(11): 2172-2180, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33831390

ABSTRACT

Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynAWT) and its M6 xylanase (XynAM6) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.


Subject(s)
Endo-1,4-beta Xylanases , Thermotolerance , Endo-1,4-beta Xylanases/genetics , Enzyme Stability , Protein Engineering , Proteins , Static Electricity
2.
Biophys J ; 111(2): 287-293, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27463131

ABSTRACT

Protein folding is a central problem in biological physics. Energetic roughness is an important aspect that controls protein-folding stability and kinetics. The roughness is associated with conflicting interactions in the protein and is also known as frustration. Recent studies indicate that an addition of a small amount of energetic frustration may enhance folding speed for certain proteins. In this study, we have investigated the conditions under which frustration increases the folding rate. We used a Cα structure-based model to simulate a group of proteins. We found that the free-energy barrier at the transition state (ΔF) correlates with nonnative-contact variation (ΔA), and the simulated proteins are clustered according to their fold motifs. These findings are corroborated by the Clementi-Plotkin analytical model. As a consequence, the optimum frustration regime for protein folding can be predicted analytically.


Subject(s)
Protein Folding , Proteins/chemistry , Kinetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...