Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 7(1): 103, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218461

ABSTRACT

As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition. This dataset includes 6,825 georeferenced soil samples from all continents and biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, this dataset can help to gain insight into the spatial distribution patterns of soil nematode abundance and community composition, and the environmental drivers shaping these patterns.


Subject(s)
Animal Distribution , Nematoda/classification , Animals , Ecosystem , Soil
2.
Mol Ecol ; 28(22): 4987-5005, 2019 11.
Article in English | MEDLINE | ID: mdl-31618508

ABSTRACT

Soil nematode communities and food web indices can inform about the complexity, nutrient flows and decomposition pathways of soil food webs, reflecting soil quality. Relative abundance of nematode feeding and life-history groups are used for calculating food web indices, i.e., maturity index (MI), enrichment index (EI), structure index (SI) and channel index (CI). Molecular methods to study nematode communities potentially offer advantages compared to traditional methods in terms of resolution, throughput, cost and time. In spite of such advantages, molecular data have not often been adopted so far to assess the effects of soil management on nematode communities and to calculate these food web indices. Here, we used high-throughput amplicon sequencing to investigate the effects of tillage (conventional vs. reduced) and organic matter addition (low vs. high) on nematode communities and food web indices in 10 European long-term field experiments and we assessed the relationship between nematode communities and soil parameters. We found that nematode communities were more strongly affected by tillage than by organic matter addition. Compared to conventional tillage, reduced tillage increased nematode diversity (23% higher Shannon diversity index), nematode community stability (12% higher MI), structure (24% higher SI), and the fungal decomposition channel (59% higher CI), and also the number of herbivorous nematodes (70% higher). Total and labile organic carbon, available K and microbial parameters explained nematode community structure. Our findings show that nematode communities are sensitive indicators of soil quality and that molecular profiling of nematode communities has the potential to reveal the effects of soil management on soil quality.


Subject(s)
Fungi/physiology , Nematoda/microbiology , Nematoda/physiology , Animals , Ecosystem , Europe , Food Chain , Soil , Soil Microbiology
3.
Nature ; 572(7768): 194-198, 2019 08.
Article in English | MEDLINE | ID: mdl-31341281

ABSTRACT

Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.


Subject(s)
Geographic Mapping , Nematoda/classification , Nematoda/isolation & purification , Soil/parasitology , Animals , Biomass , Carbon/metabolism , Nematoda/chemistry , Phylogeography , Reproducibility of Results , Uncertainty
4.
Am Nat ; 185(1): 142-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25560559

ABSTRACT

Belowground organisms often display a shift in their mass-abundance scaling relationships due to environmental factors such as soil chemistry and atmospheric deposition. Here we present new empirical data that show strong differences in allometric scaling according to whether the resolution at the local scale is based on a taxonomic or a functional classification, while only slight differences arise according to soil environmental conditions. For the first time, isometry (an inverse 1:1 proportion) is recognized in mass-abundance relationships, providing a functional signal for constant biomass distribution in soil biota regardless of discrete trophic levels. Our findings are in contrast to those from aquatic ecosystems, in that higher trophic levels in soil biota are not a direct function of increasing body mass.


Subject(s)
Biomass , Food Chain , Soil , Analysis of Variance , Biota , Ecosystem , Grassland , Netherlands , Population Density , Soil Microbiology
5.
Ecology ; 91(2): 460-73, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20392011

ABSTRACT

Understanding the impacts of agricultural intensification and extensification on soil biota communities is useful in order to preserve and restore biological diversity in agricultural soils and enhance the role of soil biota in agroecosystem functioning. Over four consecutive years, we investigated the effects of agricultural intensification and extensification (including conversion of grassland to arable land and vice versa, increased and decreased levels of mineral fertilization, and monoculture compared to crop rotation) on major soil biota group abundances and functional diversity. We integrated and compared effects across taxonomic levels to identify sensitive species groups. Conversion of grassland to arable land negatively affected both abundances and functional diversity of soil biota. Further intensification of the cropping system by increased fertilization and reduced crop diversity exerted smaller and differential effects on different soil biota groups. Agricultural intensification affected abundances of taxonomic groups with larger body size (earthworms, enchytraeids, microarthropods, and nematodes) more negatively than smaller-sized taxonomic groups (protozoans, bacteria, and fungi). Also functional group diversity and composition were more negatively affected in larger-sized soil biota (earthworms, predatory mites) than in smaller-sized soil biota (nematodes). Furthermore, larger soil biota appeared to be primarily affected by short-term consequences of conversion (disturbance, loss of habitat), whereas smaller soil biota were predominantly affected by long-term consequences (probably loss of organic matter). Reestablishment of grassland resulted in increased abundances of soil biota groups, but since not all groups increased in the same measure, the community structure was not completely restored. We concluded that larger-sized soil biota are more sensitive to agricultural intensification than smaller-sized soil biota. Furthermore, since larger-sized soil biota groups had lower taxonomic richness, we suggest that agricultural intensification exerts strongest effects on species-poor soil biota groups, thus supporting the hypothesis that biodiversity has an "insurance" function. As soil biota play an important role in agroecosystem functioning, altered soil biota abundances and functional group composition under agricultural intensification are likely to affect the functioning of the agroecosystem.


Subject(s)
Agriculture , Ecosystem , Invertebrates/physiology , Soil Microbiology , Soil , Animals , Population Dynamics , Time Factors
6.
Sci Total Environ ; 406(3): 449-54, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18715625

ABSTRACT

Heavy metal polluted soils usually contain mixtures of different metals, whereas legislation is derived from concentrations of individual metals. The mixture toxicity of the Dutch floodplain Afferdensche and Deestsche Waarden was estimated to be high (msPAF ranged from 67-94%). Analyses of nematode community based bioindicators (Maturity Index, taxonomic diversity, trophic groups, multivariate analysis, DoFT-sentinels) were used to determine the ecological effects of the mixture toxicity in the floodplain soil. None of the indices indicated direct effects of heavy metals on the nematode community. This can be explained by the high adsorption of heavy metals on organic matter and clay particles resulting in a low bioavailability, and questions the estimation of the toxicity based on total concentrations of heavy metals in such environments. The nematode fauna showed great seasonal variation, which most probably was related to the temporal inundation of the floodplain.


Subject(s)
Floods , Nematoda/drug effects , Water Pollutants/toxicity , Animals , Netherlands
SELECTION OF CITATIONS
SEARCH DETAIL
...