Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceutics ; 15(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839981

ABSTRACT

Osteoporosis is the most common type of bone disease. Conventional treatments are based on the use of antiresorptive drugs and/or anabolic agents. However, these treatments have certain limitations, such as a lack of bioavailability or toxicity in non-specific tissues. In this regard, pleiotrophin (PTN) is a protein with potent mitogenic, angiogenic, and chemotactic activity, with implications in tissue repair. On the other hand, mesoporous silica nanoparticles (MSNs) have proven to be an effective inorganic drug-delivery system for biomedical applications. In addition, the surface anchoring of cationic polymers, such as polyethylenimine (PEI), allows for greater cell internalization, increasing treatment efficacy. In order to load and release the PTN to improve its effectiveness, MSNs were successfully internalized in MC3T3-E1 mouse pre-osteoblastic cells and human mesenchymal stem cells. PTN-loaded MSNs significantly increased the viability, mineralization, and gene expression of alkaline phosphatase and Runx2 in comparison with the PTN alone in both cell lines, evidencing its positive effect on osteogenesis and osteoblast differentiation. This proof of concept demonstrates that MSN can take up and release PTN, developing a potent osteogenic and differentiating action in vitro in the absence of an osteogenic differentiation-promoting medium, presenting itself as a possible treatment to improve bone-regeneration and osteoporosis scenarios.

2.
J Transl Med ; 11: 271, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24161214

ABSTRACT

BACKGROUND: Bone is one of the major target tissues for Insulin-like Growth Factor I (IGF-I). Low doses of IGF-I were able to improve liver-associated osteopenia. In the present work, a model of partial IGF-I deficiency was used in order to provide insight into the mechanisms of the beneficial actions of IGF-I replacement therapy in bone. METHODS: Several proteins involved in osteoblastic/osteocyte and osteoclastic differentiation and activity were studied in the three experimental groups: control (CO) group (wild type mice, Igf+/+, n=10), heterozygous Igf+/- group with partial IGF-I deficiency (Hz, n=10), and heterozygous Igf+/- mice treated with IGF-I for 10 days (Hz+IGF-I, n=10). RESULTS: Data in this paper confirm that the simple partial IGF-I deficiency is responsible for osteopenia, determined by densitometry and histopathology. These findings are associated with a reduced gene expression of osteoprotegerin, sclerostin, calcitonin receptor (CTR), insulin-like growth factor binding protein 5 and RUNX2. IGF-I replacement therapy normalized CTR gene expression and reduced markers of osteoclastic activity. CONCLUSIONS: Low doses of IGF-I constituted a real replacement therapy that normalized IGF-I serum levels improving the expression of most of these proteins closely involved in bone-forming, and reducing bone resorption by mechanisms related to osteoprotegerin, RANKL and PTH receptor.


Subject(s)
Biomarkers/metabolism , Bone Resorption , Insulin-Like Growth Factor I/metabolism , Osteoblasts/metabolism , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Animals , Insulin-Like Growth Factor I/administration & dosage , Mice , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction
3.
J Cell Physiol ; 217(3): 717-27, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18651620

ABSTRACT

Parathyroid hormone-related protein (PTHrP) (107-139), in contrast to the N-terminal fragment PTHrP (1-36), has been shown to interact with the vascular endothelial growth factor (VEGF) system to modulate human osteoblast differentiation. In this study, we evaluated whether this interaction might affect human osteoblastic cell survival. Pre-incubation with PTHrP (107-139) for 1-24 h dose-dependently (0.1-100 nM) inhibited dexamethasone- or etoposide-induced cell death in human osteoblastic MG-63 cells and human osteoblast-like cells from trabecular bone. This effect, but not that elicited by PTHrP (1-36), was abolished by the VEGF receptor (VEGFR)-2 inhibitors SU5614 and SU1498 or VEGFR-2 siRNA transfection in these cells. PTHrP (107-139), but not PTHrP (1-36), at 100 nM, rapidly (within 2 min) increased VEGFR-2 tyrosine-phosphorylation in MG-63 cells; an effect unaffected by several inhibitors of metalloproteinases, neutralizing VEGF(165) or VEGFR-2 antibodies, or the VEGF binding inhibitor CBO-PP1. The latter two antagonists also failed to affect (125)I-[Tyr(116)] PTHrP (107-115) binding to these cells. Consistent with its effect on VEGFR-2 activation, PTHrP (107-139) rapidly induced extracellular signal-regulated kinase (ERK) 1/2 and Akt activaton, and both ERK and phosphatidylinsositol-3 kinase (PI3K) inhibitors abolished its pro-survival effect in human osteoblastic cells. In addition, SU5614 and the latter two types of inhibitors abrogated Runx2 activation by this peptide in MG-63 cells. Transfection with a dominant-negative Runx2 construct abolished the pro-survival effect of PTHrP (107-139), associated with a decrease in Bcl-2/Bax protein ratio. Our findings demonstrate that PTHrP (107-139) interacts with VEGFR-2 to promote human osteoblastic cell survival by a mechanism involving Runx2 activation.


Subject(s)
Osteoblasts/cytology , Osteoblasts/enzymology , Parathyroid Hormone-Related Protein/pharmacology , Peptide Fragments/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Dexamethasone/pharmacology , Enzyme Activation/drug effects , Etoposide/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Osteoblasts/drug effects , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/pharmacology
4.
J Biol Chem ; 277(31): 28109-17, 2002 Aug 02.
Article in English | MEDLINE | ID: mdl-12000745

ABSTRACT

Parathyroid hormone (PTH)-related protein (PTHrP) seems to affect bone resorption by interaction with bone cytokines, among them interleukin-6 (IL-6). Recent studies suggest that nuclear factor (NF)-kappaB activation has an important role in bone resorption. We assessed whether the N-terminal fragment of PTHrP, and its C-terminal region, unrelated to PTH, can activate NF-kappaB, and its relationship with IL-6 gene induction in different rat and human osteoblastic cell preparations. Here we present molecular data demonstrating that both PTHrP (1-36) and PTHrP (107-139) activate NF-kappaB, leading to an increase in IL-6 mRNA, in these cells. Using anti-p65 and anti-p50 antibodies, we detected the presence of both proteins in the activated NF-kappaB complex. This effect induced by either the N- or C-terminal PTHrP domain in osteoblastic cells appears to occur by different intracellular mechanisms, involving protein kinase A or intracellular Ca(2+)/protein kinase C activation, respectively. However, the effect of each peptide alone did not increase further when added together. Our findings lend support to the hypothesis that the C-terminal domain of PTHrP, in a manner similar to its N-terminal fragment, might stimulate bone resorption. These studies also provide further insights into the putative role of PTHrP as a modulator of bone remodeling.


Subject(s)
Interleukin-6/genetics , NF-kappa B/metabolism , Osteoblasts/metabolism , Peptide Fragments/pharmacology , Proteins/pharmacology , Base Sequence , Cell Line , Consensus Sequence , Cyclic AMP/metabolism , Humans , Kinetics , Oligodeoxyribonucleotides , Osteoblasts/drug effects , Parathyroid Hormone-Related Protein , RNA, Messenger/genetics , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL