Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 10079, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698037

ABSTRACT

Over the last quarter century, increasing honey bee colony losses motivated standardized large-scale surveys of managed honey bees (Apis mellifera), particularly in Europe and the United States. Here we present the first large-scale standardized survey of colony losses of managed honey bees and stingless bees across Latin America. Overall, 1736 beekeepers and 165 meliponiculturists participated in the 2-year survey (2016-2017 and 2017-2018). On average, 30.4% of honey bee colonies and 39.6% of stingless bee colonies were lost per year across the region. Summer losses were higher than winter losses in stingless bees (30.9% and 22.2%, respectively) but not in honey bees (18.8% and 20.6%, respectively). Colony loss increased with operation size during the summer in both honey bees and stingless bees and decreased with operation size during the winter in stingless bees. Furthermore, losses differed significantly between countries and across years for both beekeepers and meliponiculturists. Overall, winter losses of honey bee colonies in Latin America (20.6%) position this region between Europe (12.5%) and the United States (40.4%). These results highlight the magnitude of bee colony losses occurring in the region and suggest difficulties in maintaining overall colony health and economic survival for beekeepers and meliponiculturists.


Subject(s)
Beekeeping , Seasons , Animals , Bees/physiology , Latin America
2.
Environ Pollut ; 320: 121078, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36642174

ABSTRACT

Microplastics (MP) are ubiquitous in the environment, and there is little information available on their impact on terrestrial organisms. Their effect on insects and particularly on honeybees is relevant, given the prevalence of these organisms in the environment and the fact that they provide key ecosystem services. We conducted a field study to assess (1) the fate of these ingested MP within the hive, and (2) MP effect on Apis mellifera population growth during chronic exposure. We aimed to determine if MP ingested by honeybees are incorporated into hive matrices, including honey, and their effect on colony development and honey reserves. We fed beehives with sucrose solutions treated or untreated with 50 mg of Polyester microfibers/L for one month. Microplastic fibers (MF) from treated syrup were incorporated by adult worker bees, remaining in their cuticle, digestive tract, larvae, honey, and wax. Most of the MF were accumulated in wax showing that honey remains as a safe food. At the end of the experiment, no differences in honey reserves or bee population were observed. This is the first study to evaluate in the field the effects and dynamics of MP inside honeybee hives. Our results showed that bees can incorporate MP from the environment and deliver them into the different matrices of the hive. Concentration of MF found in honey of treated hives was like that found in commercial honey, suggesting that honeybees might be exposed to similar MP contamination levels in the environment compared to our experiment. Finally, our results highlight a way in which MP might enter the food chain, with direct implication for human health.


Subject(s)
Honey , Humans , Bees , Animals , Larva , Microplastics , Plastics/toxicity , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...