Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurogenet ; 35(3): 285-294, 2021 09.
Article in English | MEDLINE | ID: mdl-34338589

ABSTRACT

The identification of mutations in the gene fruitless (fru) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly Drosophila melanogaster. D. melanogaster males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in fru have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The fru genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the fru gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of fru P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of fru P1-derived function in D. melanogaster. Our fruΔP1 mutant will be useful for future studies of fru P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant fru alleles.


Subject(s)
Courtship , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Nerve Tissue Proteins/genetics , Sexual Behavior, Animal/physiology , Transcription Factors/genetics , Animals , Male , Mutation , Promoter Regions, Genetic
2.
BMC Genomics ; 18(1): 331, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28449654

ABSTRACT

BACKGROUND: Parasitoid resistance in Drosophila varies considerably, among and within species. An immune response, lamellocyte-mediated encapsulation, evolved in a subclade of Drosophila and was subsequently lost in at least one species within this subclade. While the mechanisms of resistance are fairly well documented in D. melanogaster, much less is known for closely related species. Here, we studied the inter- and intra-species variation in gene expression after parasitoid attack in Drosophila. We used RNA-seq after parasitization of four closely related Drosophila species of the melanogaster subgroup and replicated lines of D. melanogaster experimentally selected for increased resistance to gain insights into short- and long-term evolutionary changes. RESULTS: We found a core set of genes that are consistently up-regulated after parasitoid attack in the species and lines tested, regardless of their level of resistance. Another set of genes showed no up-regulation or expression in D. sechellia, the species unable to raise an immune response against parasitoids. This set consists largely of genes that are lineage-restricted to the melanogaster subgroup. Artificially selected lines did not show significant differences in gene expression with respect to non-selected lines in their responses to parasitoid attack, but several genes showed differential exon usage. CONCLUSIONS: We showed substantial similarities, but also notable differences, in the transcriptional responses to parasitoid attack among four closely related Drosophila species. In contrast, within D. melanogaster, the responses were remarkably similar. We confirmed that in the short-term, selection does not act on a pre-activation of the immune response. Instead it may target alternative mechanisms such as differential exon usage. In the long-term, we found support for the hypothesis that the ability to immunologically resist parasitoid attack is contingent on new genes that are restricted to the melanogaster subgroup.


Subject(s)
Drosophila/genetics , Drosophila/parasitology , Gene Expression Profiling , Genomics , Host-Parasite Interactions , Wasps/physiology , Animals , Evolution, Molecular , Genes, Insect/genetics , Molecular Sequence Annotation , Sequence Homology, Nucleic Acid , Species Specificity
3.
Mol Ecol Resour ; 14(3): 578-87, 2014 May.
Article in English | MEDLINE | ID: mdl-24215457

ABSTRACT

The parasitoid wasp genus Nasonia has rapidly become a genetic model system for developmental and evolutionary biology. The release of its genome sequence led to the development of high-resolution genomic tools, for both interspecific and intraspecific research, which has resulted in great advances in understanding Nasonia biology. To further advance the utility of Nasonia vitripennis as a genetic model system and to be able to fully exploit the advantages of its fully sequenced and annotated genome, we developed a genetically variable and well-characterized experimental population. In this study, we describe the establishment of the genetically diverse HVRx laboratory population from strains collected from the field in the Netherlands. We established a maintenance method that retains genetic variation over generations of culturing in the laboratory. As a characterization of its genetic composition, we provide data on the standing genetic variation and estimate the effective population size (N(e)) by microsatellite analysis. A genome-wide description of polymorphism is provided through pooled resequencing, which yielded 417,331 high-quality SNPs spanning all five Nasonia chromosomes. The HVRx population and its characterization are freely available as a community resource for investigators seeking to elucidate the genetic basis of complex trait variation using the Nasonia model system.


Subject(s)
Animals, Laboratory/genetics , Wasps/genetics , Animals , Animals, Laboratory/classification , Animals, Outbred Strains , Breeding , Female , Genetic Variation , Genome , Male , Wasps/classification
4.
J Alzheimers Dis ; 19(3): 991-1005, 2010.
Article in English | MEDLINE | ID: mdl-20157254

ABSTRACT

Misfolding, oligomerization, and aggregation of the amyloid-beta (Abeta) peptide is widely recognized as a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies have identified soluble Abeta oligomers as the main pathogenic agents and provided evidence that such oligomeric Abeta aggregates are neurotoxic, disrupt synaptic plasticity, and inhibit long-term potentiation. A promising therapeutic strategy in the battle against AD is the application of short synthetic peptides which are designed to bind to specific Abeta-regions thereby neutralizing or interfering with the devastating properties of oligomeric Abeta species. In the present study, we investigated the neuroprotective properties of the amyloid sequence derived pentapeptide LPYFDa in vitro as well as its memory preserving capacity against Abeta(42)-induced learning deficits in vivo. In vitro we showed that neurons in culture treated with LPYFDa are protected against Abeta (42) -induced cell death. Moreover, in vivo LPYFDa prevented memory impairment tested in a contextual fear conditioning paradigm in mice after bilateral intrahippocampal Abeta (42) injections. We thus showed for the first time that an anti-amyloid peptide like LPYFDa can preserve memory by reverting Abeta (42) oligomer-induced learning deficits.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Oligopeptides/metabolism , Alzheimer Disease/pathology , Animals , Blotting, Western , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Electrophoresis , Hippocampus/metabolism , Hippocampus/pathology , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...