Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 290: 118063, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34482245

ABSTRACT

Anthropogenic noise in the oceans is disturbing marine life. Among other groups, pelagic fish are likely to be affected by sound from human activities, but so far have received relatively little attention. Offshore wind farms have become numerous and will become even more abundant in the next decades. Wind farms can be interesting to pelagic fish due to food abundance or fisheries restrictions. At the same time, construction of wind farms involves high levels of anthropogenic noise, likely disturbing and/or deterring pelagic fish. Here, we investigated whether bottom-moored echosounders are a suitable tool for studying the effects of impulsive - intermittent, high-intensity - anthropogenic noise on pelagic fish around wind farms and we explored the possible nature of their responses. Three different wind farms along the Dutch and Belgian coast were examined, one with exposure to the passing by of an experimental seismic survey with a full-scale airgun array, one with pile driving activity in an adjacent wind farm construction site and one control site without exposure. Two bottom-moored echosounders were placed in each wind farm and recorded fish presence and behaviour before, during and after the exposures. The echosounders were successful in detecting variation in the number of fish schools and their behaviour. During the seismic survey exposure there were significantly fewer, but more cohesive, schools than before, whereas during pile driving fish swam shallower with more cohesive schools. However, the types and magnitudes of response patterns were also observed at the control site with no impulsive sound exposure. We therefore stress the need for thorough replication beyond single case studies, before we can conclude that impulsive sounds, from either seismic surveys or pile driving, are a disturbing factor for pelagic fish in otherwise attractive habitat around wind farms.


Subject(s)
Energy-Generating Resources , Noise , Animals , North Sea , Sound , Wind
2.
PLoS One ; 7(3): e33052, 2012.
Article in English | MEDLINE | ID: mdl-22431996

ABSTRACT

In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa(2) (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa(2)s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa(2)s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised.


Subject(s)
Environmental Exposure , Fishes/physiology , Noise, Occupational/adverse effects , Sound/adverse effects , Air Sacs/physiology , Analysis of Variance , Animals , Larva/physiology , Models, Biological , Pilot Projects , Pressure , Signal Processing, Computer-Assisted , Survival Analysis
3.
Mar Environ Res ; 66(3): 319-26, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18599117

ABSTRACT

Two harbor porpoises in a floating pen were subjected to five pure tone underwater signals of 70 or 120 kHz with different signal durations, amplitudes and duty cycles (% of time sound is produced). Some signals were continuous, others were intermittent (duty cycles varied between 8% and 100%). The effect of each signal was judged by comparing the animals' surfacing locations and number of surfacings (i.e. number of respirations) during test periods with those during baseline periods. In all cases, both porpoises moved away from the sound source, but the effect of the signals on respiration rates was negligible. Pulsed 70 kHz signals with a source level (SL) of 137 dB had a similar effect as a continuous 70 kHz signal with an SL of 148 dB (re 1 microPa, rms). Also, a pulsed 70 kHz signal with an SL of 147 dB had a much stronger deterring effect than a continuous 70 kHz signal with a similar SL. For pulsed 70 kHz signals (2 s pulse duration, 4s pulse interval, SL 147 dB re 1 microPa, rms), the avoidance threshold sound pressure level (SPL), in the context of the present study, was estimated to be around 130 dB (re 1 microPa, rms) for porpoise 064 and around 124 dB (re 1 microPa, rms) for porpoise 047. This study shows that ultrasonic pingers (70 kHz) can deter harbor porpoises. Such ultrasonic pingers have the advantage that they do not have a "dinner bell" effect on pinnipeds, and probably have no, or less, effect on other marine fauna, which are often sensitive to low frequency sounds.


Subject(s)
Acoustic Stimulation , Behavior, Animal , Phocoena/physiology , Animals , Auditory Threshold , Male , Ultrasonics
4.
J Acoust Soc Am ; 123(4): 1858-61, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18396994

ABSTRACT

The use of ultrasonic sounds in alarms for gillnets may be advantageous, but the deterring effects of ultrasound on porpoises are not well understood. Therefore a harbor porpoise in a large floating pen was subjected to a continuous 50 kHz pure tone with a source level of 122+/-3 dB (re 1 microPa, rms). When the test signal was switched on during test periods, the animal moved away from the sound source. Its respiration rate was similar to that during baseline periods, when the sound was switched off. The behavior of the porpoise was related to the sound pressure level distribution in the pen. The sound level at the animal's average swimming location during the test periods was approximately 107+/-3 dB (re 1 microPa, rms). The avoidance threshold sound pressure level for a continuous 50 kHz pure tone for this porpoise, in the context of this study, is estimated to be 108+/-3 dB (re 1 microPa, rms). This study demonstrates that porpoises may be deterred from an area by high frequency sounds that are not typically audible to fish and pinnipeds and would be less likely masked by ambient noise.


Subject(s)
Auditory Threshold/physiology , Avoidance Learning , Behavior, Animal , Animals , Echolocation , Male , Perceptual Masking , Phocoena , Ultrasonics
5.
Mar Environ Res ; 65(5): 369-77, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18295877

ABSTRACT

World-wide, underwater background noise levels are increasing due to anthropogenic activities. Little is known about the effects of anthropogenic noise on marine fish, and information is needed to predict any negative effects. Behavioural startle response thresholds were determined for eight marine fish species, held in a large tank, to tones of 0.1-64 kHz. Response threshold levels varied per frequency within and between species. For sea bass, the 50% reaction threshold occurred for signals of 0.1-0.7 kHz, for thicklip mullet 0.4-0.7 kHz, for pout 0.1-0.25 kHz, for horse mackerel 0.1-2 kHz and for Atlantic herring 4 kHz. For cod, pollack and eel, no 50% reaction thresholds were reached. Reaction threshold levels increased from approximately 100 dB (re 1 microPa, rms) at 0.1 kHz to approximately 160 dB at 0.7 kHz. The 50% reaction thresholds did not run parallel to the hearing curves. This shows that fish species react very differently to sound, and that generalisations about the effects of sound on fish should be made with care. As well as on the spectrum and level of anthropogenic sounds, the reactions of fish probably depend on the context (e.g. location, temperature, physiological state, age, body size, and school size).


Subject(s)
Fishes/physiology , Noise/adverse effects , Reflex, Startle/physiology , Acoustic Stimulation , Animals , Hearing/physiology , North Sea , Seawater , Sound/adverse effects , Species Specificity , Swimming
6.
J Acoust Soc Am ; 122(2): 1238-48, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17672670

ABSTRACT

It is unclear how well harbor porpoises can locate sound sources, and thus can locate acoustic alarms on gillnets. Therefore the ability of a porpoise to determine the location of a sound source was determined. The animal was trained to indicate the active one of 16 transducers in a 16-m-diam circle around a central listening station. The duration and received level of the narrowband frequency-modulated signals (center frequencies 16, 64 and 100 kHz) were varied. The animal's localization performance increased when the signal duration increased from 600 to 1000 ms. The lower the received sound pressure level (SPL) of the signal, the harder the animal found it to localize the sound source. When pulse duration was long enough (approximately 1 s) and the received SPLs of the sounds were high (34-50 dB above basic hearing thresholds or 3-15 dB above the theoretical masked detection threshold in the ambient noise condition of the present study), the animal could locate sounds of the three frequencies almost equally well. The porpoise was able to locate sound sources up to 124 degrees to its left or right more easily than sounds from behind it.


Subject(s)
Echolocation/physiology , Phocoena/physiology , Acoustic Stimulation , Animals , Animals, Wild , Hearing/physiology , Housing, Animal , Male , Seawater , Sound
7.
Mar Environ Res ; 64(2): 160-80, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17316783

ABSTRACT

World-wide many cetaceans drown incidentally in fishing nets. To reduce the unwanted bycatch in gillnets, pingers (acoustic alarms) have been developed that are attached to the nets. In the European Union, pingers will be made compulsory in some areas in 2005 and in others in 2007. However, pingers may effect non-target marine fauna such as fish. Therefore in this study, the effects of seven commercially-available pingers on the behaviour of five North Sea fish species in a large tank were quantified. The species tested were: sea bass (Dicentrarchus labrax), pout (Trisopterus luscus), thicklip mullet (Chelon labrosus), herring (Clupea harengus), and cod (Gadus morhua). The fish were housed as single-species schools of 9-13 individuals in a tank. The behaviour of fish in quiet periods was compared with their behaviour during periods with active pingers. The results varied both between pingers and between fish species. Sea bass decreased their speed in response to one pinger and swam closer to the surface in response to another. Thicklip mullet swam closer to the bottom in response to two pingers and increased their swimming speed in response to one pinger. Herring swam faster in response to one pinger, and pout and cod (close relatives) showed no behavioural responses to any of the pingers. Of the seven pingers tested, four elicited responses in at least one fish species, and three elicited no responses. Whether similar responses would be elicited in these fish species in the wild, and if so, whether such responses would influence the catch rate of fisheries, cannot be derived from the results of this study. However, the results indicate the need for field studies with pingers and fish. Based on the small number of fish species tested, the present study suggests that the higher the frequency of a pinger, the less likely it is to affect the behaviour of marine fish.


Subject(s)
Acoustic Stimulation , Behavior, Animal , Cetacea/physiology , Fisheries/instrumentation , Fishes/physiology , Animals , Bass/anatomy & histology , Bass/physiology , Conservation of Natural Resources , Fishes/anatomy & histology , Gadiformes/anatomy & histology , Gadiformes/physiology , Gadus morhua/anatomy & histology , Gadus morhua/physiology , North Sea , Smegmamorpha/anatomy & histology , Smegmamorpha/physiology , Species Specificity , Swimming
10.
J Acoust Soc Am ; 118(3 Pt 1): 1820-9, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16240840

ABSTRACT

The unmasked underwater hearing sensitivities of an 8-year-old male and a 7-year-old female Steller sea lion were measured in a pool, by using behavioral psychophysics. The animals were trained with positive reinforcement to respond when they detected an acoustic signal and not to respond when they did not. The signals were narrow-band, frequency-modulated stimuli with a duration of 600 ms and center frequencies ranging from 0.5 to 32 kHz for the male and from 4 to 32 kHz for the female. Detection thresholds at each frequency were measured by varying signal amplitude according to the up-down staircase method. The resulting underwater audiogram (50% detection thresholds) for the male Steller sea lion showed the typical mammalian U-shape. His maximum sensitivity (77 dB re: 1 microPa, rms) occurred at 1 kHz. The range of best hearing (10 dB from the maximum sensitivity) was from 1 to 16 kHz (4 octaves). Higher hearing thresholds (indicating poorer sensitivity) were observed below 1 kHz and above 16 kHz. The maximum sensitivity of the female (73 dB re: 1 microPa, rms) occurred at 25 kHz. Higher hearing thresholds (indicating poorer sensitivity) were observed for signals below 16 kHz and above 25 kHz. At frequencies for which both subjects were tested, hearing thresholds of the male were significantly higher than those of the female. The hearing sensitivity differences between the male and female Steller sea lion in this study may be due to individual differences in sensitivity between the subjects or due to sexual dimorphism in hearing.


Subject(s)
Auditory Threshold/physiology , Hearing/physiology , Sea Lions/physiology , Water , Animals , Female , Male , Psychoacoustics
11.
J Acoust Soc Am ; 118(2): 1172-9, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16158671

ABSTRACT

Receiving beam patterns of a harbor porpoise were measured in the horizontal plane, using narrow-band frequency modulated signals with center frequencies of 16, 64, and 100 kHz. Total signal duration was 1000 ms, including a 200 ms rise time and 300 ms fall time. The harbor porpoise was trained to participate in a psychophysical test and stationed itself horizontally in a specific direction in the center of a 16-m-diameter circle consisting of 16 equally-spaced underwater transducers. The animal's head and the transducers were in the same horizontal plane, 1.5 m below the water surface. The go/no-go response paradigm was used; the animal left the listening station when it heard a sound signal. The method of constants was applied. For each transducer the 50% detection threshold amplitude was determined in 16 trials per amplitude, for each of the three frequencies. The beam patterns were not symmetrical with respect to the midline of the animal's body, but had a deflection of 3-7 degrees to the right. The receiving beam pattern narrowed with increasing frequency. Assuming that the pattern is rotation-symmetrical according to an average of the horizontal beam pattern halves, the receiving directivity indices are 4.3 at 16 kHz, 6.0 at 64 kHz, and 11.7 dB at 100 kHz. The receiving directivity indices of the porpoise were lower than those measured for bottlenose dolphins. This means that harbor porpoises have wider receiving beam patterns than bottlenose dolphins for the same frequencies. Directivity of hearing improves the signal-to-noise ratio and thus is a tool for a better detection of certain signals in a given ambient noise condition.


Subject(s)
Echolocation/physiology , Phocoena/physiology , Pitch Perception/physiology , Acoustic Stimulation/instrumentation , Animals , Conditioning, Psychological , Male , Psychoacoustics
12.
J Acoust Soc Am ; 113(2): 1130-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12597206

ABSTRACT

The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 1/3 oct). Maximum sensitivity (42 dB re 1 microPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.


Subject(s)
Dolphins/physiology , Pitch Discrimination/physiology , Acoustic Stimulation , Animals , Auditory Threshold/physiology , Female , Fourier Analysis , Signal Processing, Computer-Assisted , Sound Spectrography
13.
J Acoust Soc Am ; 112(1): 334-44, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12141360

ABSTRACT

The underwater hearing sensitivity of a two-year-old harbor porpoise was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using narrow-band frequency-modulated signals having center frequencies between 250 Hz and 180 kHz. The resulting audiogram was U-shaped with the range of best hearing (defined as 10 dB within maximum sensitivity) from 16 to 140 kHz, with a reduced sensitivity around 64 kHz. Maximum sensitivity (about 33 dB re 1 microPa) occurred between 100 and 140 kHz. This maximum sensitivity range corresponds with the peak frequency of echolocation pulses produced by harbor porpoises (120-130 kHz). Sensitivity falls about 10 dB per octave below 16 kHz and falls off sharply above 140 kHz (260 dB per octave). Compared to a previous audiogram of this species (Andersen, 1970), the present audiogram shows less sensitive hearing between 2 and 8 kHz and more sensitive hearing between 16 and 180 kHz. This harbor porpoise has the highest upper-frequency limit of all odontocetes investigated. The time it took for the porpoise to move its head 22 cm after the signal onset (movement time) was also measured. It increased from about 1 s at 10 dB above threshold, to about 1.5 s at threshold.


Subject(s)
Auditory Perception , Hearing/physiology , Animals , Audiometry , Echolocation , Noise , Porpoises , Psychoacoustics
SELECTION OF CITATIONS
SEARCH DETAIL
...