Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
FEBS Lett ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426219

ABSTRACT

Hematopoietic stem cell (HSC) fate decisions are dictated by epigenetic landscapes. The Polycomb Repressive Complex 1 (PRC1) represses genes that induce differentiation, thereby maintaining HSC self-renewal. Depending on which chromobox (CBX) protein (CBX2, CBX4, CBX6, CBX7, or CBX8) is part of the PRC1 complex, HSC fate decisions differ. Here, we review how this occurs. We describe how CBX proteins dictate age-related changes in HSCs and stimulate oncogenic HSC fate decisions, either as canonical PRC1 members or by alternative interactions, including non-epigenetic regulation. CBX2, CBX7, and CBX8 enhance leukemia progression. To target, reprogram, and kill leukemic cells, we suggest and describe multiple therapeutic strategies to interfere with the epigenetic functions of oncogenic CBX proteins. Future studies should clarify to what extent the non-epigenetic function of cytoplasmic CBX proteins is important for normal, aged, and leukemic blood cells.

2.
Blood Adv ; 8(1): 99-111, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37939263

ABSTRACT

ABSTRACT: Aging leads to a decline in function of hematopoietic stem cells (HSCs) and increases susceptibility to hematological disease. We found CD61 to be highly expressed in aged murine HSCs. Here, we investigate the role of CD61 in identifying distinct subpopulations of aged HSCs and assess how expression of CD61 affects stem cell function. We show that HSCs with high expression of CD61 are functionality superior and retain self-renewal capacity in serial transplantations. In primary transplantations, aged CD61High HSCs function similarly to young HSCs. CD61High HSCs are more quiescent than their CD61Low counterparts. We also show that in aged bone marrow, CD61High and CD61Low HSCs are transcriptomically distinct populations. Collectively, our research identifies CD61 as a key player in maintaining stem cell quiescence, ensuring the preservation of their functional integrity and potential during aging. Moreover, CD61 emerges as a marker to prospectively isolate a superior, highly dormant population of young and aged HSCs, making it a valuable tool both in fundamental and clinical research.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Animals , Mice , Aging , Hematopoietic Stem Cells/metabolism , Integrin beta3/metabolism
3.
Nat Aging ; 2: 851-866, 2022 09.
Article in English | MEDLINE | ID: mdl-36438588

ABSTRACT

Cellular senescence is a stable type of cell cycle arrest triggered by different stresses. As such, senescence drives age-related diseases and curbs cellular replicative potential. Here, we show that 3-deazaadenosine (3DA), an S-adenosyl homocysteinase (AHCY) inhibitor, alleviates replicative and oncogene-induced senescence. 3DA-treated senescent cells showed reduced global Histone H3 Lysine 36 trimethylation (H3K36me3), an epigenetic modification that marks the bodies of actively transcribed genes. By integrating transcriptome and epigenome data, we demonstrate that 3DA treatment affects key factors of the senescence transcriptional program. Remarkably, 3DA treatment alleviated senescence and increased the proliferative and regenerative potential of muscle stem cells from very old mice in vitro and in vivo. Moreover, ex vivo 3DA treatment was sufficient to enhance the engraftment of human umbilical cord blood (UCB) cells in immunocompromised mice. Together, our results identify 3DA as a promising drug enhancing the efficiency of cellular therapies by restraining senescence.


Subject(s)
Cellular Senescence , Histones , Humans , Mice , Animals , Histones/genetics , Cellular Senescence/genetics , Tubercidin/pharmacology , Epigenesis, Genetic
4.
Nat Commun ; 13(1): 5187, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057685

ABSTRACT

Specific functions of the immune system are essential to protect us from infections caused by pathogens such as viruses and bacteria. However, as we age, the immune system shows a functional decline that can be attributed in large part to age-associated defects in hematopoietic stem cells (HSCs)-the cells at the apex of the immune cell hierarchy. Here, we find that the Hippo pathway coactivator TAZ is potently induced in old HSCs and protects these cells from functional decline. We identify Clca3a1 as a TAZ-induced gene that allows us to trace TAZ activity in vivo. Using CLCA3A1 as a marker, we can isolate "young-like" HSCs from old mice. Mechanistically, Taz acts as coactivator of PU.1 and to some extent counteracts the gradual loss of PU.1 expression during HSC aging. Our work thus uncovers an essential role for Taz in a previously undescribed fail-safe mechanism in aging HSCs.


Subject(s)
Aging , Hematopoietic Stem Cells , Aging/physiology , Animals , Hematopoietic Stem Cells/metabolism , Mice
5.
iScience ; 25(10): 105047, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36147959

ABSTRACT

Stem/progenitor cells are required for maintenance of salivary gland (SG) function and serve as untapped reservoirs to create functional cells. Despite recent advancements in the identification of stem/progenitor pools, in the submandibular gland (SMG), a knowledge gap remains. Furthermore, the contribution to adult SMG homeostasis of stem/progenitor cells originating from embryonic development is unclear. Here, we employ an H2B-GFP embryonic and adult pulse-and-chase system to characterize potential SMG stem/progenitor cells (SGSCs) based on quiescence at different stages. Phenotypical profiling of quiescent cells in the SMG revealed that label-retaining cells (LRCs) of embryonic or adult origin co-localized with CK8+ ductal or vimentin + mesenchymal, but not with CK5+ or CK14 + stem/progenitor cells. These SMG LRCs failed to self-renew in vitro while non-label retaining cells displayed differentiation and long-term expansion potential as organoids. Collectively, our data suggest that an active cycling population of cells is responsible for SMG homeostasis with organoid forming potential.

6.
J Cell Sci ; 135(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35535520

ABSTRACT

Sonic hedgehog (SHH) medulloblastoma originates from the cerebellar granule neuron progenitor (CGNP) lineage, which depends on Hedgehog signaling for its perinatal expansion. Whereas SHH tumors exhibit overall deregulation of this pathway, they also show patient age-specific aberrations. To investigate whether the developmental stage of the CGNP can account for these age-specific lesions, we analyzed developing murine CGNP transcriptomes and observed highly dynamic gene expression as a function of age. Cross-species comparison with human SHH medulloblastoma showed partial maintenance of these expression patterns, and highlighted low primary cilium expression as hallmark of infant medulloblastoma and early embryonic CGNPs. This coincided with reduced responsiveness to upstream SHH pathway component Smoothened, whereas sensitivity to downstream components SUFU and GLI family proteins was retained. Together, these findings can explain the preference for SUFU mutations in infant medulloblastoma and suggest that drugs targeting the downstream SHH pathway will be most appropriate for infant patients.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Neural Stem Cells , Animals , Cell Proliferation/physiology , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Mice , Neural Stem Cells/metabolism
8.
Cells ; 10(8)2021 07 21.
Article in English | MEDLINE | ID: mdl-34440618

ABSTRACT

Hematopoietic stem cells (HSCs) sustain the lifelong production of all blood cell lineages. The functioning of aged HSCs is impaired, including a declined repopulation capacity and myeloid and platelet-restricted differentiation. Both cell-intrinsic and microenvironmental extrinsic factors contribute to HSC aging. Recent studies highlight the emerging role of inflammation in contributing to HSC aging. In this review, we summarize the recent finding of age-associated changes of HSCs and the bone marrow niche in which they lodge, and discuss how inflammation may drive HSC aging.


Subject(s)
Cellular Senescence , Hematopoietic Stem Cells/pathology , Inflammation/pathology , Stem Cell Niche , Animals , Cell Proliferation , Cell Self Renewal , Hematopoietic Stem Cells/metabolism , Humans , Inflammation/metabolism , Inflammation Mediators/metabolism , Phenotype , Signal Transduction
9.
Blood ; 138(6): 439-451, 2021 08 12.
Article in English | MEDLINE | ID: mdl-33876187

ABSTRACT

We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using 2 independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp (P-selectin), the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics or deletion of Dnmt3a/b molecularly resembles HSC rejuvenation or aging, respectively.


Subject(s)
Cellular Senescence , Gene Expression Profiling , Hematopoietic Stem Cells/metabolism , Transcriptome , Animals , Hematopoietic Stem Cells/cytology , Mice , Mice, Transgenic
10.
Nat Commun ; 12(1): 608, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504783

ABSTRACT

Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.


Subject(s)
Hematopoietic Stem Cells/metabolism , Membrane Proteins/metabolism , Netrin-1/metabolism , Stem Cell Niche , Animals , Arterioles/metabolism , Cell Differentiation , Cell Proliferation , Cellular Senescence , Gene Deletion , Hematopoietic Stem Cell Transplantation , Mice, Mutant Strains , Mice, Transgenic , Signal Transduction
11.
Exp Hematol ; 94: 47-59.e5, 2021 02.
Article in English | MEDLINE | ID: mdl-33333212

ABSTRACT

MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression posttranscriptionally by binding to the 3' untranslated regions of their target mRNAs. The evolutionarily conserved microRNA-125a (miR-125a) is highly expressed in both murine and human hematopoietic stem cells (HSCs), and previous studies have found that miR-125 strongly enhances self-renewal of HSCs and progenitors. In this study we explored whether temporary overexpression of miR-125a would be sufficient to permanently increase HSC self-renewal or, rather, whether persistent overexpression of miR-125a is required. We used three complementary in vivo approaches to reversibly enforce expression of miR-125a in murine HSCs. Additionally, we interrogated the underlying molecular mechanisms responsible for the functional changes that occur in HSCs on overexpression of miR-125a. Our data indicate that continuous expression of miR-125a is required to enhance HSC activity. Our molecular analysis confirms changes in pathways that explain the characteristics of miR-125a overexpressing HSCs. Moreover, it provides several novel putative miR-125a targets, but also highlights the complex molecular changes that collectively lead to enhanced HSC function.


Subject(s)
Hematopoietic Stem Cells/cytology , MicroRNAs/genetics , Animals , Cell Self Renewal , Cells, Cultured , Female , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Up-Regulation
12.
Oral Dis ; 27(1): 52-63, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32531849

ABSTRACT

OBJECTIVE: Hyposalivation-related xerostomia is an irreversible, untreatable, and frequent condition after radiotherapy for head and neck cancer. Stem cell therapy is an attractive option of treatment, but demands knowledge of stem cell functioning. Therefore, we aimed to develop a murine parotid gland organoid model to explore radiation response of stem cells in vitro. MATERIALS AND METHODS: Single cells derived from murine parotid gland organoids were passaged in Matrigel with defined medium to assess self-renewal and differentiation potential. Single cells were irradiated and plated in a 3D clonogenic stem cell survival assay to assess submandibular and parotid gland radiation response. RESULTS: Single cells derived from parotid gland organoids were able to extensively self-renew and differentiate into all major tissue cell types, indicating the presence of potential stem cells. FACS selection for known salivary gland stem cell markers CD24/CD29 did not further enrich for stem cells. The parotid gland organoid-derived stem cells displayed radiation dose-response curves similar to the submandibular gland. CONCLUSIONS: Murine parotid gland organoids harbor stem cells with long-term expansion and differentiation potential. This model is useful for mechanistic studies of stem cell radiation response and suggests similar radiosensitivity for the parotid and submandibular gland organoids.


Subject(s)
Head and Neck Neoplasms , Radiation , Xerostomia , Animals , Mice , Organoids , Parotid Gland , Salivary Glands , Submandibular Gland
13.
Exp Hematol ; 91: 46-54, 2020 11.
Article in English | MEDLINE | ID: mdl-32946982

ABSTRACT

Clonal heterogeneity fuels leukemia evolution, therapeutic resistance, and relapse. Upfront detection of therapy-resistant leukemia clones at diagnosis may allow adaptation of treatment and prevention of relapse, but this is hampered by a paucity of methods to identify and trace single leukemia-propagating cells and their clonal offspring. Here, we tested methods of cellular barcoding analysis, to trace the in vivo competitive dynamics of hundreds of patient-derived leukemia clones upon chemotherapy-mediated selective pressure. We transplanted Nod/Scid/Il2Rγ-/- (NSG) mice with barcoded patient-derived or SupB15 acute lymphoblastic leukemia (ALL) cells and assessed clonal responses to dexamethasone, methotrexate, and vincristine, longitudinally and across nine anatomic locations. We illustrate that chemotherapy reduces clonal diversity in a drug-dependent manner. At end-stage disease, methotrexate-treated patient-derived xenografts had significantly fewer clones compared with placebo-treated mice (100 ± 10 vs. 160 ± 15 clones, p = 0.0005), while clonal complexity in vincristine- and dexamethasone-treated xenografts was unaffected (115 ± 33 and 150 ± 7 clones, p = NS). Using tools developed to assess differential gene expression, we determined whether these clonal patterns resulted from random clonal drift or selection. We identified 5 clones that were reproducibly enriched in methotrexate-treated patient-derived xenografts, suggestive of pre-existent resistance. Finally, we found that chemotherapy-mediated selection resulted in a more asymmetric distribution of leukemia clones across anatomic sites. We found that cellular barcoding is a powerful method to trace the clonal dynamics of human patient-derived leukemia cells in response to chemotherapy. In the future, integration of cellular barcoding with single-cell sequencing technology may allow in-depth characterization of therapy-resistant leukemia clones and identify novel targets to prevent relapse.


Subject(s)
Clone Cells/drug effects , DNA Barcoding, Taxonomic , Drug Resistance, Neoplasm , Leukemia, B-Cell/pathology , Neoplastic Stem Cells/drug effects , Adolescent , Animals , DNA, Neoplasm/genetics , Dexamethasone/pharmacology , Heterografts , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Methotrexate/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Selection, Genetic , Single-Cell Analysis , Vincristine/pharmacology
14.
Mech Ageing Dev ; 189: 111281, 2020 07.
Article in English | MEDLINE | ID: mdl-32512019

ABSTRACT

The functional decline that is observed in HSCs upon aging is attributed mainly to cell intrinsic factors that regulate quiescence, self-renewal and differentiation. MicroRNAs (miRs) have an indispensable role in the regulation of HSCs and have been shown to also regulate processes related to tissue aging in specific cell types. Here we discuss the role of miRs in the regulation of HSC self-renewal and differentiation throughout life and its implications for future research.


Subject(s)
Aging/metabolism , Cell Differentiation , Cellular Senescence , Hematopoietic Stem Cells/metabolism , MicroRNAs/metabolism , Animals , Humans
15.
Leukemia ; 34(7): 1974, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32005923

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Sci Rep ; 10(1): 22439, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33384442

ABSTRACT

Age-associated DNA methylation reflects aspect of biological aging-therefore epigenetic clocks for mice can elucidate how the aging process in this model organism is affected by specific treatments or genetic background. Initially, age-predictors for mice were trained for genome-wide DNA methylation profiles and we have recently described a targeted assay based on pyrosequencing of DNA methylation at only three age-associated genomic regions. Here, we established alternative approaches using droplet digital PCR (ddPCR) and barcoded bisulfite amplicon sequencing (BBA-seq). At individual CG dinucleotides (CpGs) the correlation of DNA methylation with chronological age was slightly higher for pyrosequencing and ddPCR as compared to BBA-seq. On the other hand, BBA-seq revealed that neighboring CpGs tend to be stochastically modified at murine age-associated regions. Furthermore, the binary sequel of methylated and non-methylated CpGs in individual reads can be used for single-read predictions, which may reflect heterogeneity in epigenetic aging. In comparison to C57BL/6 mice the single-read age-predictions using BBA-seq were also accelerated in the shorter-lived DBA/2 mice, and in C57BL/6 mice with a lifespan quantitative trait locus of DBA/2 mice. Taken together, we describe alternative targeted methods for epigenetic age predictions that provide new perspectives for aging-intervention studies in mice.


Subject(s)
Aging/genetics , Epigenesis, Genetic , Epigenomics , Animals , Computational Biology/methods , CpG Islands , DNA Methylation , Epigenomics/methods , Genetic Background , Genomics/methods , High-Throughput Nucleotide Sequencing , Mice , Real-Time Polymerase Chain Reaction
17.
Biol Blood Marrow Transplant ; 26(1): 16-25, 2020 01.
Article in English | MEDLINE | ID: mdl-31494231

ABSTRACT

Umbilical cord blood (UCB) provides an alternative source of hematopoietic stem cells (HSCs) for allogeneic transplantation. Administration of sufficient donor HSCs is critical to restore recipient hematopoiesis and to maintain long-term polyclonal blood formation. However, due to lack of unique markers, the frequency of HSCs among UCB CD34+ cells is the subject of ongoing debate, urging for reproducible strategies for their counting. Here, we used cellular barcoding to determine the frequency and clonal dynamics of human UCB HSCs and to determine how data analysis methods affect these parameters. We transplanted lentivirally barcoded CD34+ cells from 20 UCB donors into Nod/Scid/IL2Ry-/- (NSG) mice (n = 30). Twelve recipients (of 8 UCB donors) engrafted with >1% GFP+ cells, allowing for clonal analysis by multiplexed barcode deep sequencing. Using multiple definitions of clonal diversity and strategies for data filtering, we demonstrate that differences in data analysis can change clonal counts by several orders of magnitude and propose methods to improve their consistency. Using these methods, we show that the frequency of NSG-repopulating cells was low (median ∼1 HSC/104 CD34+ UCB cells) and could vary up to 10-fold between donors. Clonal patterns in blood became increasingly consistent over time, likely reflecting initial output of transient progenitors, followed by long-term HSCs with stable hierarchies. The majority of long-term clones displayed multilineage output, yet clones with lymphoid- or myeloid-biased output were also observed. Altogether, this study uncovers substantial interdonor and analysis-induced variability in the frequency of UCB CD34+ clones that contribute to post-transplant hematopoiesis. As clone tracing is increasingly relevant, we urge for universal and transparent methods to count HSC clones during normal aging and upon transplantation.


Subject(s)
Cord Blood Stem Cell Transplantation , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Animals , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID
19.
Cells ; 8(8)2019 08 10.
Article in English | MEDLINE | ID: mdl-31405121

ABSTRACT

Aging is associated with multiple molecular and functional changes in haematopoietic cells. Most notably, the self-renewal and differentiation potential of hematopoietic stem cells (HSCs) are compromised, resulting in myeloid skewing, reduced output of red blood cells and decreased generation of immune cells. These changes result in anaemia, increased susceptibility for infections and higher prevalence of haematopoietic malignancies. In HSCs, age-associated global epigenetic changes have been identified. These epigenetic alterations in aged HSCs can occur randomly (epigenetic drift) or are the result of somatic mutations in genes encoding for epigenetic proteins. Mutations in loci that encode epigenetic modifiers occur frequently in patients with haematological malignancies, but also in healthy elderly individuals at risk to develop these. It may be possible to pharmacologically intervene in the aberrant epigenetic program of derailed HSCs to enforce normal haematopoiesis or treat age-related haematopoietic diseases. Over the past decade our molecular understanding of epigenetic regulation has rapidly increased and drugs targeting epigenetic modifications are increasingly part of treatment protocols. The reversibility of epigenetic modifications renders these targets for novel therapeutics. In this review we provide an overview of epigenetic changes that occur in aging HSCs and age-related malignancies and discuss related epigenetic drugs.


Subject(s)
Aging/metabolism , Enzyme Inhibitors/therapeutic use , Epigenesis, Genetic/drug effects , Hematologic Neoplasms , Hematopoietic Stem Cells/metabolism , Animals , Cell Line , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Hematopoietic Stem Cells/pathology , Humans , Mice
20.
Commun Biol ; 2: 208, 2019.
Article in English | MEDLINE | ID: mdl-31240246

ABSTRACT

The transcription factors LAP1, LAP2 and LIP are derived from the Cebpb-mRNA through the use of alternative start codons. High LIP expression has been associated with human cancer and increased cancer incidence in mice. However, how LIP contributes to cellular transformation is poorly understood. Here we present that LIP induces aerobic glycolysis and mitochondrial respiration reminiscent of cancer metabolism. We show that LIP-induced metabolic programming is dependent on the RNA-binding protein LIN28B, a translational regulator of glycolytic and mitochondrial enzymes with known oncogenic function. LIP activates LIN28B through repression of the let-7 microRNA family that targets the Lin28b-mRNA. Transgenic mice overexpressing LIP have reduced levels of let-7 and increased LIN28B expression, which is associated with metabolic reprogramming as shown in primary bone marrow cells, and with hyperplasia in the skin. This study establishes LIP as an inducer of cancer-type metabolic reprogramming and as a regulator of the let-7/LIN28B regulatory circuit.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , MicroRNAs/genetics , Neoplasms/metabolism , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Codon , Fibroblasts/metabolism , Glycolysis , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/metabolism , Oxygen Consumption , Proteome , RNA Interference , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Rats , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...