Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioinformatics ; 38(18): 4403-4405, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35861394

ABSTRACT

SUMMARY: The ever-increasing number of sequenced genomes necessitates the development of pangenomic approaches for comparative genomics. Introduced in 2016, PanTools is a platform that allows pangenome construction, homology grouping and pangenomic read mapping. The use of graph database technology makes PanTools versatile, applicable from small viral genomes like SARS-CoV-2 up to large plant or animal genomes like tomato or human. Here, we present our third major update to PanTools that enables the integration of functional annotations and provides both gene-level analyses and phylogenetics. AVAILABILITY AND IMPLEMENTATION: PanTools is implemented in Java 8 and released under the GNU GPLv3 license. Software and documentation are available at https://git.wur.nl/bioinformatics/pantools. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Phylogeny , SARS-CoV-2/genetics , Software , Genome, Viral
2.
BMC Genomics ; 22(1): 265, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33849459

ABSTRACT

BACKGROUND: Bacterial plant pathogens of the Pectobacterium genus are responsible for a wide spectrum of diseases in plants, including important crops such as potato, tomato, lettuce, and banana. Investigation of the genetic diversity underlying virulence and host specificity can be performed at genome level by using a comprehensive comparative approach called pangenomics. A pangenomic approach, using newly developed functionalities in PanTools, was applied to analyze the complex phylogeny of the Pectobacterium genus. We specifically used the pangenome to investigate genetic differences between virulent and avirulent strains of P. brasiliense, a potato blackleg causing species dominantly present in Western Europe. RESULTS: Here we generated a multilevel pangenome for Pectobacterium, comprising 197 strains across 19 species, including type strains, with a focus on P. brasiliense. The extensive phylogenetic analysis of the Pectobacterium genus showed robust distinct clades, with most detail provided by 452,388 parsimony-informative single-nucleotide polymorphisms identified in single-copy orthologs. The average Pectobacterium genome consists of 47% core genes, 1% unique genes, and 52% accessory genes. Using the pangenome, we zoomed in on differences between virulent and avirulent P. brasiliense strains and identified 86 genes associated to virulent strains. We found that the organization of genes is highly structured and linked with gene conservation, function, and transcriptional orientation. CONCLUSION: The pangenome analysis demonstrates that evolution in Pectobacteria is a highly dynamic process, including gene acquisitions partly in clusters, genome rearrangements, and loss of genes. Pectobacterium species are typically not characterized by a set of species-specific genes, but instead present themselves using new gene combinations from the shared gene pool. A multilevel pangenomic approach, fusing DNA, protein, biological function, taxonomic group, and phenotypes, facilitates studies in a flexible taxonomic context.


Subject(s)
Pectobacterium , Solanum tuberosum , Europe , Gene Pool , Pectobacterium/genetics , Phylogeny , Plant Diseases , Solanum tuberosum/genetics
3.
Plant J ; 102(3): 480-492, 2020 05.
Article in English | MEDLINE | ID: mdl-31820490

ABSTRACT

Genome wide screening of pooled pollen samples from a single interspecific F1 hybrid obtained from a cross between tomato, Solanum lycopersicum and its wild relative, Solanum pimpinellifolium using linked read sequencing of the haploid nuclei, allowed profiling of the crossover (CO) and gene conversion (GC) landscape. We observed a striking overlap between cold regions of CO in the male gametes and our previously established F6 recombinant inbred lines (RILs) population. COs were overrepresented in non-coding regions in the gene promoter and 5'UTR regions of genes. Poly-A/T and AT rich motifs were found enriched in 1 kb promoter regions flanking the CO sites. Non-crossover associated allelic and ectopic GCs were detected in most chromosomes, confirming that besides CO, GC represents also a source for genetic diversity and genome plasticity in tomato. Furthermore, we identified processed break junctions pointing at the involvement of both homology directed and non-homology directed repair pathways, suggesting a recombination machinery in tomato that is more complex than currently anticipated.


Subject(s)
Meiosis/physiology , Solanum lycopersicum/cytology , Solanum lycopersicum/genetics , 5' Untranslated Regions/genetics , Chromosomes, Plant/genetics , Crossing Over, Genetic , Genome, Plant/genetics , Genotype , Meiosis/genetics , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA
4.
BMC Bioinformatics ; 18(1): 12, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-28049428

ABSTRACT

BACKGROUND: A large share of agriculturally and horticulturally important plant species are polyploid. Linkage maps are used to locate associations between genes and traits by breeders and geneticists. Linkage map creation for polyploid species is not supported by standard tools. We want to overcome this limitation and validate our results with simulation studies. RESULTS: We developed PERGOLA, a deterministic and heuristic method that addresses this problem. We show that it creates correct linkage groups, marker orders and distances for simulated and real datasets. We compare it to existing tools and demonstrate that it overcomes limitations in ploidy and outperforms them in computational time and mapping accuracy. We represent linkage maps as dendrograms and show that this has advantages in the comparison of different maps. CONCLUSIONS: PERGOLA can be used successfully to calculate linkage maps for diploid and polyploid species and outperforms existing tools.


Subject(s)
Chromosome Mapping/methods , User-Computer Interface , Algorithms , Genetic Linkage , Internet , Polyploidy
5.
BMC Genomics ; 17: 672, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27554097

ABSTRACT

BACKGROUND: Association studies are an essential part of modern plant breeding, but are limited for polyploid crops. The increased number of possible genotype classes complicates the differentiation between them. Available methods are limited with respect to the ploidy level or data producing technologies. While genotype classification is an established noise reduction step in diploids, it gains complexity with increasing ploidy levels. Eventually, the errors produced by misclassifications exceed the benefits of genotype classes. Alternatively, continuous genotype values can be used for association analysis in higher polyploids. We associated continuous genotypes to three different traits and compared the results to the output of the genotype caller SuperMASSA. Linear, Bayesian and partial least squares regression were applied, to determine if the use of continuous genotypes is limited to a specific method. A disease, a flowering and a growth trait with h (2) of 0.51, 0.78 and 0.91 were associated with a hexaploid chrysanthemum genotypes. The data set consisted of 55,825 probes and 228 samples. RESULTS: We were able to detect associating probes using continuous genotypes for multiple traits, using different regression methods. The identified probe sets were overlapping, but not identical between the methods. Baysian regression was the most restrictive method, resulting in ten probes for one trait and none for the others. Linear and partial least squares regression led to numerous associating probes. Association based on genotype classes resulted in similar values, but missed several significant probes. A simulation study was used to successfully validate the number of associating markers. CONCLUSIONS: Association of various phenotypic traits with continuous genotypes is successful with both uni- and multivariate regression methods. Genotype calling does not improve the association and shows no advantages in this study. Instead, use of continuous genotypes simplifies the analysis, saves computational time and results more potential markers.


Subject(s)
Chrysanthemum/growth & development , Flowers/growth & development , Genome-Wide Association Study/methods , Quantitative Trait Loci , Bayes Theorem , Chrysanthemum/genetics , Computational Biology/methods , Flowers/genetics , Gene Regulatory Networks , Genotype , Least-Squares Analysis , Phenotype , Polyploidy
6.
BMC Genomics ; 17: 324, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27142305

ABSTRACT

BACKGROUND: Genomic prediction (GP) allows breeders to select plants and animals based on their breeding potential for desirable traits, without lengthy and expensive field trials or progeny testing. We have proposed to use Dissimilarity-based Partial Least Squares (DPLS) for GP. As a case study, we use the DPLS approach to predict Bacterial wilt (BW) in tomatoes using SNPs as predictors. The DPLS approach was compared with the Genomic Best-Linear Unbiased Prediction (GBLUP) and single-SNP regression with SNP as a fixed effect to assess the performance of DPLS. RESULTS: Eight genomic distance measures were used to quantify relationships between the tomato accessions from the SNPs. Subsequently, each of these distance measures was used to predict the BW using the DPLS prediction model. The DPLS model was found to be robust to the choice of distance measures; similar prediction performances were obtained for each distance measure. DPLS greatly outperformed the single-SNP regression approach, showing that BW is a comprehensive trait dependent on several loci. Next, the performance of the DPLS model was compared to that of GBLUP. Although GBLUP and DPLS are conceptually very different, the prediction quality (PQ) measured by DPLS models were similar to the prediction statistics obtained from GBLUP. A considerable advantage of DPLS is that the genotype-phenotype relationship can easily be visualized in a 2-D scatter plot. This so-called score-plot provides breeders an insight to select candidates for their future breeding program. CONCLUSIONS: DPLS is a highly appropriate method for GP. The model prediction performance was similar to the GBLUP and far better than the single-SNP approach. The proposed method can be used in combination with a wide range of genomic dissimilarity measures and genotype representations such as allele-count, haplotypes or allele-intensity values. Additionally, the data can be insightfully visualized by the DPLS model, allowing for selection of desirable candidates from the breeding experiments. In this study, we have assessed the DPLS performance on a single trait.


Subject(s)
Genomics/methods , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Solanum lycopersicum/genetics , Algorithms , Genome, Plant , Genotype , Least-Squares Analysis , Solanum lycopersicum/microbiology , Phenotype , Quantitative Trait Loci
7.
BMC Genomics ; 16: 789, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26467528

ABSTRACT

BACKGROUND: Adventitious root (AR) formation is a critical step in vegetative propagation of most ornamental plants, such as carnation. AR formation from stem cuttings is usually divided into several stages according to physiological and metabolic markers. Auxin is often applied exogenously to promote the development of ARs on stem cuttings of difficult-to-root genotypes. RESULTS: By whole transcriptome sequencing, we identified the genes involved in AR formation in carnation cuttings and in response to exogenous auxin. Their expression profiles have been analysed through RNA-Seq during a time-course experiment in the stem cutting base of two cultivars with contrasting efficiencies of AR formation. We explored the kinetics of root primordia formation in these two cultivars and in response to exogenously-applied auxin through detailed histological and physiological analyses. CONCLUSIONS: Our results provide, for the first time, a number of molecular, histological and physiological markers that characterize the different stages of AR formation in this species and that could be used to monitor adventitious rooting on a wide collection of carnation germplasm with the aim to identify the best-rooting cultivars for breeding purposes.


Subject(s)
Dianthus/genetics , Gene Expression Profiling/methods , Plant Roots/genetics , Transcriptome/genetics , Dianthus/growth & development , Gene Expression Regulation, Plant , Microarray Analysis/methods , Plant Proteins/biosynthesis , Plant Roots/growth & development , Plant Stems/genetics , Plant Stems/growth & development
8.
BMC Genomics ; 16: 550, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26216467

ABSTRACT

BACKGROUND: Vernalization is an obligatory requirement of extended exposure to low temperatures to induce flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50% compared to non-vernalized plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C. RESULTS: We assembled de-novo a transcriptome which, after filtering, yielded 121,572 transcripts and 42,430 genes which hold 15,414 annotated genes, with up to 3,657 GO terms. This extensive annotation was mapped to the more general GO slim plant with a total of 94 terms. The response to cold exposure was summarized in 6 expression clusters, providing useful patterns for dissecting the dynamics of vernalization in lily. The functional annotation (GO and GO slim plant) was used to group transcripts in gene sets. Analysis of these gene sets and profiles revealed that most of the enriched functions among genes up-regulated by cold exposure were related to epigenetic processes and chromatin remodeling. Candidate vernalization genes in lily were selected based on their sequence similarity to known regulators of flowering in other species. CONCLUSIONS: We present a detailed analysis of gene expression dynamics during vernalization in Lilium, covering several time points and accounting for biological variation by the use of replicates. The resulting collection of transcripts and novel isoforms provides a useful resource for studying the changes occurring during vernalization at a fine level. The selected potential candidate genes can shed light on the regulation of this process.


Subject(s)
Flowers/growth & development , Gene Expression Profiling/methods , Genes, Plant , Lilium/genetics , Cold Temperature , Epigenesis, Genetic , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Ontology , Lilium/physiology , Molecular Sequence Annotation
9.
BMC Bioinformatics ; 11: 158, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20346140

ABSTRACT

BACKGROUND: Gene expression data can be analyzed by summarizing groups of individual gene expression profiles based on GO annotation information. The mean expression profile per group can then be used to identify interesting GO categories in relation to the experimental settings. However, the expression profiles present in GO classes are often heterogeneous, i.e., there are several different expression profiles within one class. As a result, important experimental findings can be obscured because the summarizing profile does not seem to be of interest. We propose to tackle this problem by finding homogeneous subclasses within GO categories: preclustering. RESULTS: Two microarray datasets are analyzed. First, a selection of genes from a well-known Saccharomyces cerevisiae dataset is used. The GO class "cell wall organization and biogenesis" is shown as a specific example. After preclustering, this term can be associated with different phases in the cell cycle, where it could not be associated with a specific phase previously. Second, a dataset of differentiation of human Mesenchymal Stem Cells (MSC) into osteoblasts is used. For this dataset results are shown in which the GO term "skeletal development" is a specific example of a heterogeneous GO class for which better associations can be made after preclustering. The Intra Cluster Correlation (ICC), a measure of cluster tightness, is applied to identify relevant clusters. CONCLUSIONS: We show that this method leads to an improved interpretability of results in Principal Component Analysis.


Subject(s)
Gene Expression Profiling/methods , Gene Expression , Principal Component Analysis , Cell Cycle/genetics , Cell Differentiation/genetics , Cluster Analysis , Databases, Genetic , Humans , Mesenchymal Stem Cells/cytology , Saccharomyces cerevisiae/genetics
10.
Bone ; 46(3): 613-27, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19857615

ABSTRACT

Bone marrow-derived human mesenchymal stem cells (hMSCs) have the in vitro capacity to differentiate into osteoblasts, chondrocytes or adipocytes, depending on the applied stimulus. In order to identify novel regulators of osteogenesis in hMSCs, osteo-transcriptomics was performed whereby differentiation induced by dexamethasone (DEX), DEX+ bone morphogenetic protein 2 (BMP2), and DEX+ Vitamin D(3) (1,25(OH)(2)D(3)) was studied over a course of 12 days. Microarray analysis revealed that 2095 genes were significantly regulated by DEX+ 1,25(OH)(2)D(3), of which 961 showed accelerated expression kinetics compared to treatment by DEX alone. The majority of these genes were accelerated 24-48 h after onset of osteogenic treatment. Gene ontology (GO) analysis of these 1,25(OH)(2)D(3)-accelerated genes indicated their involvement in biological processes related to cellular differentiation and cell cycle regulation. When compared to cells treated with DEX or DEX+BMP2, treatment with DEX+ 1,25(OH)(2)D(3) clearly accelerated osteoprogenitor commitment and osteoblast maturation, as measured by alkaline phosphatase (ALP) activity and calcification of the matrix. Cell cycle progression, as observed after initial growth arrest, was not significantly accelerated by 1,25(OH)(2)D(3) and was not required for onset and progression of osteogenesis. However, expression of c-Myc was accelerated by 1,25(OH)(2)D(3), and binding sites for c-MYC were enriched in promoters of genes accelerated by 1,25(OH)(2)D(3). Lentiviral overexpression of c-MYC strongly promoted DEX+ BMP2-induced osteoblast differentiation and matrix maturation. In conclusion, our studies show for the first time that 1,25(OH)(2)D(3) strongly accelerates expression of genes involved in differentiation of hMSCs and, moreover, identify c-MYC as a novel regulator of osteogenesis.


Subject(s)
Bone Morphogenetic Protein 2/physiology , Cell Differentiation/genetics , Gene Expression Profiling , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Osteogenesis/genetics , Proto-Oncogene Proteins c-myc/physiology , Vitamin D/physiology , Bone Morphogenetic Protein 2/genetics , Calcification, Physiologic/genetics , Cells, Cultured , Gene Expression Profiling/methods , Gene Expression Regulation/physiology , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Osteoblasts/cytology , Osteoblasts/physiology , Proto-Oncogene Proteins c-myc/biosynthesis , Up-Regulation/genetics
11.
PLoS One ; 4(8): e6646, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19680557

ABSTRACT

BACKGROUND: Excessive exposure to dietary fats is an important factor in the initiation of obesity and metabolic syndrome associated pathologies. The cellular processes associated with the onset and progression of diet-induced metabolic syndrome are insufficiently understood. PRINCIPAL FINDINGS: To identify the mechanisms underlying the pathological changes associated with short and long-term exposure to excess dietary fat, hepatic gene expression of ApoE3Leiden mice fed chow and two types of high-fat (HF) diets was monitored using microarrays during a 16-week period. A functional characterization of 1663 HF-responsive genes reveals perturbations in lipid, cholesterol and oxidative metabolism, immune and inflammatory responses and stress-related pathways. The major changes in gene expression take place during the early (day 3) and late (week 12) phases of HF feeding. This is also associated with characteristic opposite regulation of many HF-affected pathways between these two phases. The most prominent switch occurs in the expression of inflammatory/immune pathways (early activation, late repression) and lipogenic/adipogenic pathways (early repression, late activation). Transcriptional network analysis identifies NF-kappaB, NEMO, Akt, PPARgamma and SREBP1 as the key controllers of these processes and suggests that direct regulatory interactions between these factors may govern the transition from early (stressed, inflammatory) to late (pathological, steatotic) hepatic adaptation to HF feeding. This transition observed by hepatic gene expression analysis is confirmed by expression of inflammatory proteins in plasma and the late increase in hepatic triglyceride content. In addition, the genes most predictive of fat accumulation in liver during 16-week high-fat feeding period are uncovered by regression analysis of hepatic gene expression and triglyceride levels. CONCLUSIONS: The transition from an inflammatory to a steatotic transcriptional program, possibly driven by the reciprocal activation of NF-kappaB and PPARgamma regulators, emerges as the principal signature of the hepatic adaptation to excess dietary fat. These findings may be of essential interest for devising new strategies aiming to prevent the progression of high-fat diet induced pathologies.


Subject(s)
Adaptation, Physiological , Dietary Fats/administration & dosage , Fatty Liver/genetics , Genome , Liver/metabolism , RNA, Messenger/genetics , Transcription, Genetic , Animals , Blood Proteins/metabolism , Fatty Liver/physiopathology , Liver/physiopathology , Male , Mice , Mice, Transgenic , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...