Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Dairy Sci ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38490557

ABSTRACT

Methane (CH4) emissions will be added to many national ruminant breeding programs in the coming years. Little is known about the covariance structure of CH4 traits over a lactation, which is important for optimizing recording strategies and to establish optimal genetic evaluation models. Our aim was to study CH4 over a lactation using random regression (RR) models, and to compare the accuracy to a fixed regression repeatability model under different phenotyping strategies. Data were available from repeated measurements of CH4 concentrations (ppm), recorded in the feed bins of milking robots, on 52 commercial dairy farms in the Netherlands. In total, 36,370 averaged weekly records were available from 4,664 cows. Genetic parameters were estimated using a fixed regression model, and a RR model with 1st to 5th order Legendre polynomials for the additive genetic and within lactation permanent environmental effect. The mean heritability was 0.17 ± 0.04, and the mean within lactation repeatability was 0.56 ± 0.03. The genetic correlations between days in milk were high and ranged from 0.34 ± 0.36 to 1.00 ± < 0.01. Permanent environmental correlations showed large deviations and ranged from -0.73 ± 0.08 to 1.00 ± < 0.01. With a large number of full lactation daughter CH4 records per bull, the reliability was not sensitive to using the fixed versus RR model. However, when shorter periods were recorded at the start and end of the lactation, the fixed regression model resulted in a loss of reliability up to 28% for bulls. Assuming the fixed model when the true (co)variance structure is reflected by the RR model, more than twice as long recording from the start of lactation was required to achieve maximum reliability for a bull. Thus, a too simplistic model could result in implementing too little recording, and lower genetic gains than predicted from the reliability.

2.
J Dairy Sci ; 106(6): 4121-4132, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080783

ABSTRACT

To reduce methane (CH4) emissions of dairy cows by animal breeding, CH4 measurements have to be recorded on thousands of individual cows. Currently, several techniques are used to phenotype cows for CH4, differing in costs and applicability. However, there is uncertainty about the agreement between techniques. To judge the similarity and repeatability between measurements of different recording techniques, the repeatability, heritability, and genetic correlation are useful metrics. Therefore, our objective was to estimate (1) the repeatability and heritability for CH4 and carbon dioxide production recorded by GreenFeed (GF) and for CH4 and carbon dioxide concentration measured by cost-effective but less accurate sniffers, and (2) the genetic correlation between CH4 recorded with these 2 different on farm and high throughput techniques. Data were available from repeated measurements of CH4 production (grams/day) by GF units and of CH4 concentration (ppm) by sniffers, recorded on commercial dairy farms in the Netherlands. The final data comprised 24,284 GF daily means from 822 cows, 170,826 sniffer daily means from 1,800 cows, and 1,786 daily means from 75 cows by both GF and sniffer (in the same period). Additionally, CH4 records were averaged per week. For daily and weekly mean GF CH4 the heritabilities were 0.19 ± 0.02 and 0.33 ± 0.04, and for daily and weekly mean sniffer CH4 the heritabilities were similar and were 0.18 ± 0.01 and 0.32 ± 0.02, respectively. Phenotypic correlations between GF CH4 production and sniffer CH4 concentration were moderate (0.39 ± 0.03 for daily means and 0.37 ± 0.05 for weekly means). However, genetic correlations were high; 0.71 ± 0.13 for daily means and 0.76 ± 0.15 for weekly means. The high genetic correlation indicates that selection on low CH4 concentrations (ppm) recorded by the cost-effective sniffer method, will result in reduced CH4 production (grams/day) as recorded with GF.


Subject(s)
Carbon Dioxide , Milk , Female , Cattle/genetics , Animals , Milk/chemistry , Methane , Phenotype , Farms , Lactation , Diet/veterinary
3.
J Dairy Sci ; 105(10): 8535-8542, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35688739

ABSTRACT

Enteric methane is a major source of greenhouse gas emissions from milk production systems. Two organizations based in the United States, the Foundation for Food and Agriculture Research and the Dairy Research Institute, have developed a collaborative program to align resources and fund projects to identify, develop, and validate new and existing mitigation options for enteric methane emissions from dairy and beef cattle. This collaborative program is called the Greener Cattle Initiative. The program will develop requests for proposals and award grants on projects that address challenges within, but not limited, to the following research areas: dairy and beef cattle nutrition, rumen microbiome, dairy and beef cattle genetics, sensing and data technology for enteric methane measurement and prediction, and socioeconomic analysis of enteric methane mitigation practices. The program is structured as a consortium with closed participation and a flat governance collaboration model. The Greener Cattle Initiative program will continue incorporating participants from the food and agriculture industry, commodity groups, and nonprofit organizations who share common objectives and contribute in-kind and matching funds to the program, up to a total of 10 organizations. Research findings will be communicated broadly, after a waiting period for exclusive access to program participants, to create shared knowledge on enteric methane mitigation. The Greener Cattle Initiative is expected to award up to $5 million in research grant funding in a 5-year period, which will contribute to advancing the voluntary greenhouse gas reduction goals established by both the United States and global dairy sectors.


Subject(s)
Greenhouse Gases , Methane , Animals , Cattle , Diet/veterinary , Humans , Methane/analysis , Milk/chemistry , Rumen/chemistry , Ruminants
4.
J Dairy Sci ; 105(5): 4256-4271, 2022 May.
Article in English | MEDLINE | ID: mdl-35307185

ABSTRACT

Animal breeding techniques offer potential to reduce enteric emissions of ruminants to lower the environmental impact of dairy farming. The aim of this study was to estimate the heritability and repeatability of methane (CH4) concentrations, using the largest data set from long-term repeatedly recorded CH4 on cows to date, and to evaluate (1) the accuracy of breeding values for different CH4 traits, including using visits or weekly means, and (2) recording strategies (with varying numbers of records and recorded daughters per sire). The data comprised of long-term recording of CH4 and carbon dioxide (CO2), from 1,746 Holstein Friesian cows, on 14 commercial dairy farms throughout the Netherlands. Emissions were recorded in 10- to 35-s intervals, between 64 and 436 d, depending on farms. From each robot visit, CH4 and CO2 concentrations were summarized into various traits, averaged per visit and per week: mean, median, mean log, and mean CH4/CO2 ratio. Genetic parameters were estimated with animal repeatability models, using a restricted maximum likelihood procedure, and a relationship matrix based on genotypes and pedigree. The heritability was equal for mean and median CH4 per visit (0.13) but lower for logCH4 and CH4/CO2 (0.07 and 0.01, respectively). Phenotypic and genetic correlations were high (≥0.78) between the CH4 traits, apart from the genetic correlations with the CH4/CO2 trait, which were negative. To achieve a minimum reliability of 50% for the estimated breeding value of a bull, 25 records on mean CH4, measured on 10 different daughters, were sufficient. Although the heritability and repeatability were higher for weekly (0.32 and 0.68, respectively) than for visit mean CH4 (0.13 and 0.30, respectively), the reliabilities of estimated breeding values from visit or weekly means were equal; thus, we found no advantage in averaging records to weekly means for genetic evaluations.


Subject(s)
Lactation , Methane , Animals , Carbon Dioxide , Cattle/genetics , Female , Male , Methane/analysis , Milk/chemistry , Reproducibility of Results
5.
Animal ; 15 Suppl 1: 100294, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34246599

ABSTRACT

The global livestock sector, particularly ruminants, contributes substantially to the total anthropogenic greenhouse gases. Management and dietary solutions to reduce enteric methane (CH4) emissions are extensively researched. Animal breeding that exploits natural variation in CH4 emissions is an additional mitigation solution that is cost-effective, permanent, and cumulative. We quantified the effect of including CH4 production in the Dutch breeding goal using selection index theory. The current Dutch national index contains 15 traits, related to milk yield, longevity, health, fertility, conformation and feed efficiency. From the literature, we obtained a heritability of 0.21 for enteric CH4 production, and genetic correlations of 0.4 with milk lactose, protein, fat and DM intake. Correlations between enteric CH4 production and other traits in the breeding goal were set to zero. When including CH4 production in the current breeding goal with a zero economic value, CH4 production increases each year by 1.5 g/d as a correlated response. When extrapolating this, the average daily CH4 production of 392 g/d in 2018 will increase to 442 g/d in 2050 (+13%). However, expressing the CH4 production as CH4 intensity in the same period shows a reduction of 13%. By putting economic weight on CH4 production in the breeding goal, selective breeding can reduce the CH4 intensity even by 24% in 2050. This shows that breeding is a valuable contribution to the whole set of mitigation strategies that could be applied in order to achieve the goals for 2050 set by the EU. If the decision is made to implement animal breeding strategies to reduce enteric CH4 production, and to achieve the expected breeding impact, there needs to be a sufficient reliability of prediction. The only way to achieve that is to have enough animals phenotyped and genotyped. The power calculations offer insights into the difficulties that will be faced in trying to record enough data. Recording CH4 data on 100 farms (with on average 150 cows each) for at least 2 years is required to achieve the desired reliability of 0.40 for the genomic prediction.


Subject(s)
Greenhouse Gases , Methane , Animals , Cattle/genetics , Diet , Female , Lactation , Methane/analysis , Milk/chemistry , Reproducibility of Results , Selective Breeding
6.
J Dairy Sci ; 103(3): 2442-2459, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31954564

ABSTRACT

There is considerable interest in improving feed utilization of dairy cattle while limiting losses to the environment (i.e., greenhouse gases, GHG). To breed for feed-efficient or climate-friendly cattle, it is first necessary to obtain accurate estimates of genetic parameters and correlations of feed intake, greenhouse gases, and production traits. Reducing dry matter take (DMI) requirements while maintaining production has high economic value to farmers, but DMI is costly to record and thus limited to small research or nucleus herds. Conversely, enteric methane (CH4) currently has no economic value, is also costly to record, and is limited to small experimental trials. However, breath gas concentrations of methane (CH4c) and carbon dioxide (CO2c) are relatively cheap to measure at high throughput under commercial conditions by installing sniffers in automated milking stations. The objective of this study was to assess the genetic correlations between DMI, body weight (BW), fat- and protein-corrected milk yield (FPCM), and GHG-related traits: CH4c and CO2c from Denmark (DNK) and the Netherlands (NLD). A second objective was to assess the genetic potential for improving feed efficiency and the added benefits of using CH4c and CO2c as indicators. Feed intake data were available on 703 primiparous cows in DNK and 524 in NLD; CH4c and CO2c records were available on 434 primiparous cows in DNK and 656 in NLD. The GHG-related traits were heritable (e.g., CH4c h2: DNK = 0.26, NLD = 0.15) but were differentially genetically correlated with DMI and feed efficiency in both magnitude and sign, depending on the population and the definition of feed efficiency. Across feed efficiency traits and DMI, having bulls with 100 daughters with FPCM, BW, and GHG traits resulted in sufficiently high accuracy to almost negate the need for DMI records. Despite differences in genetic correlation structure, the relatively cheap GHG-related traits showed considerable potential for improving the accuracy of breeding values of highly valuable feed intake and feed efficiency traits.


Subject(s)
Animal Feed , Breath Tests , Cattle/physiology , Greenhouse Gases/analysis , Lactation/genetics , Animal Feed/economics , Animals , Body Weight/genetics , Denmark , Digestion , Eating , Female , Milk , Milk Proteins/analysis , Netherlands , Phenotype
7.
J Dairy Sci ; 102(9): 7655-7663, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31255263

ABSTRACT

Feed efficiency has been widely studied in many areas of dairy science and is currently seeing renewed interest in the field of breeding and genetics. A critical part of determining how efficiently an animal utilizes feed is accurately measuring individual dry matter (DM) intake. Currently, multiple methods are used to measure feed intake or determine the DM content of that feed, resulting in different levels of accuracy of measurement. Furthermore, the scale at which data need to be collected for use in genetic analyses makes some methodologies impractical. This systematic review aims to provide an overview of the current methodologies used to measure both feed intake in ruminants and DM content of feedstuffs, current methods to predict individual DM intake, and applications of large-scale intake measurements. Overall, advances in milk spectral data analysis present a promising method of estimating individual DM intake on a herd scale with further validation of prediction models. Although measurements of individual feed intake rely on the same underlying principle, the methods selected are largely dictated by the costs of capital, labor, and necessary analyses. Finally, DM methodologies were synthesized into a comprehensive protocol for use in a variety of feedstuffs.


Subject(s)
Cattle/physiology , Eating/physiology , Phenotype , Animal Feed/economics , Animal Nutritional Physiological Phenomena , Animals , Body Weight/genetics , Breeding , Costs and Cost Analysis , Dairying/economics , Dairying/methods , Female , Lactation/genetics , Milk/economics
8.
J Dairy Sci ; 101(4): 3140-3154, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29395135

ABSTRACT

Genome-wide association (GWA) of feed efficiency (FE) could help target important genomic regions influencing FE. Data provided by an international dairy FE research consortium consisted of phenotypic records on dry matter intakes (DMI), milk energy (MILKE), and metabolic body weight (MBW) on 6,937 cows from 16 stations in 4 counties. Of these cows, 4,916 had genotypes on 57,347 single nucleotide polymorphism (SNP) markers. We compared a GWA analysis based on the more classical residual feed intake (RFI) model with one based on a previously proposed multiple trait (MT) approach for modeling FE using an alternative measure (DMI|MILKE,MBW). Both models were based on a single-step genomic BLUP procedure that allowed the use of phenotypes from both genotyped and nongenotyped cows. Estimated effects for single SNP markers were small and not statistically important but virtually identical for either FE measure (RFI vs. DMI|MILKE,MBW). However, upon further refining this analysis to develop joint tests within nonoverlapping 1-Mb windows, significant associations were detected between either measure of FE with a window on each of Bos taurus autosomes BTA12 and BTA26. There was, as expected, no overlap between detected genomic regions for DMI|MILKE,MBW and genomic regions influencing the energy sink traits (i.e., MILKE and MBW) because of orthogonal relationships clearly defined between the various traits. Conversely, GWA inferences on DMI can be demonstrated to be partly driven by genetic associations between DMI with these same energy sink traits, thereby having clear implications when comparing GWA studies on DMI to GWA studies on FE-like measures such as RFI.


Subject(s)
Body Weight , Cattle/physiology , Energy Intake , Milk/chemistry , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Genome-Wide Association Study/veterinary , Models, Genetic , Phenotype
9.
J Dairy Sci ; 100(11): 9103-9114, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28865857

ABSTRACT

Given the interest of including dry matter intake (DMI) in the breeding goal, accurate estimated breeding values (EBV) for DMI are needed, preferably for separate lactations. Due to the limited amount of records available on DMI, 2 main approaches have been suggested to compute those EBV: (1) the inclusion of predictor traits, such as fat- and protein-corrected milk (FPCM) and live weight (LW), and (2) the addition of genomic information of animals using what is called genomic prediction. Recently, several methodologies to estimate EBV utilizing genomic information (EBV) have become available. In this study, a new method known as single-step ridge-regression BLUP (SSRR-BLUP) is suggested. The SSRR-BLUP method does not have an imposed limit on the number of genotyped animals, as the commonly used methods do. The objective of this study was to estimate genetic parameters using a relatively large data set with DMI records, as well as compare the accuracies of the EBV for DMI. These accuracies were obtained using 4 different methods: BLUP (using pedigree for all animals with phenotypes), genomic BLUP (GBLUP; only for genotyped animals), single-step GBLUP (SS-GBLUP), and SSRR-BLUP (for genotyped and nongenotyped animals). Records from different lactations, with or without predictor traits (FPCM and LW), were used in the model. Accuracies of EBV for DMI (defined as the correlation between the EBV and pre-adjusted DMI phenotypes divided by the average accuracy of those phenotypes) ranged between 0.21 and 0.38 across methods and scenarios. Accuracies of EBV for DMI using BLUP were the lowest accuracies obtained across methods. Meanwhile, accuracies of EBV for DMI were similar in SS-GBLUP and SSRR-BLUP, and lower for the GBLUP method. Hence, SSRR-BLUP could be used when the number of genotyped animals is large, avoiding the construction of the inverse genomic relationship matrix. Adding information on DMI from different lactations in the reference population gave higher accuracies in comparison when only lactation 1 was included. Finally, no benefit was obtained by adding information on predictor traits to the reference population when DMI was already included. However, in the absence of DMI records, having records on FPCM and LW from different lactations is a good way to obtain EBV with a relatively good accuracy.


Subject(s)
Cattle/genetics , Cattle/physiology , Lactation/genetics , Models, Genetic , Animals , Breeding , Female , Genome , Genomics/methods , Genotype , Lactation/physiology , Milk Proteins/genetics , Milk Proteins/metabolism , Regression Analysis
10.
J Dairy Sci ; 100(11): 9061-9075, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28843688

ABSTRACT

The objective of this study was to identify genomic regions and candidate genes associated with feed efficiency in lactating Holstein cows. In total, 4,916 cows with actual or imputed genotypes for 60,671 single nucleotide polymorphisms having individual feed intake, milk yield, milk composition, and body weight records were used in this study. Cows were from research herds located in the United States, Canada, the Netherlands, and the United Kingdom. Feed efficiency, defined as residual feed intake (RFI), was calculated within location as the residual of the regression of dry matter intake (DMI) on milk energy (MilkE), metabolic body weight (MBW), change in body weight, and systematic effects. For RFI, DMI, MilkE, and MBW, bivariate analyses were performed considering each trait as a separate trait within parity group to estimate variance components and genetic correlations between them. Animal relationships were established using a genomic relationship matrix. Genome-wide association studies were performed separately by parity group for RFI, DMI, MilkE, and MBW using the Bayes B method with a prior assumption that 1% of single nucleotide polymorphisms have a nonzero effect. One-megabase windows with greatest percentage of the total genetic variation explained by the markers (TGVM) were identified, and adjacent windows with large proportion of the TGVM were combined and reanalyzed. Heritability estimates for RFI were 0.14 (±0.03; ±SE) in primiparous cows and 0.13 (±0.03) in multiparous cows. Genetic correlations between primiparous and multiparous cows were 0.76 for RFI, 0.78 for DMI, 0.92 for MBW, and 0.61 for MilkE. No single 1-Mb window explained a significant proportion of the TGVM for RFI; however, after combining windows, significance was met on Bos taurus autosome 27 in primiparous cows, and nearly reached on Bos taurus autosome 4 in multiparous cows. Among other genes, these regions contain ß-3 adrenergic receptor and the physiological candidate gene, leptin, respectively. Between the 2 parity groups, 3 of the 10 windows with the largest effects on DMI neighbored windows affecting RFI, but were not in the top 10 regions for MilkE or MBW. This result suggests a genetic basis for feed intake that is unrelated to energy consumption required for milk production or expected maintenance as determined by MBW. In conclusion, feed efficiency measured as RFI is a polygenic trait exhibiting a dynamic genetic basis and genetic variation distinct from that underlying expected maintenance requirements and milk energy output.


Subject(s)
Animal Feed , Cattle/psychology , Eating , Lactation , Animals , Bayes Theorem , Body Weight/genetics , Cattle/genetics , Eating/genetics , Female , Genetic Variation , Genome , Genome-Wide Association Study/veterinary , Milk/metabolism , Parity , Phenotype , Polymorphism, Single Nucleotide , Pregnancy
11.
Animal ; 11(10): 1839-1851, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28558861

ABSTRACT

To sustainably contribute to food security of a growing and richer world population, livestock production systems are challenged to increase production levels while reducing environmental impact, being economically viable, and socially responsible. Knowledge about the sustainability performance of current livestock production systems may help to formulate strategies for future systems. Our study provides a systematic overview of differences between conventional and organic livestock production systems on a broad range of sustainability aspects and animal species available in peer-reviewed literature. Systems were compared on economy, productivity, environmental impact, animal welfare and public health. The review was limited to dairy cattle, beef cattle, pigs, broilers and laying hens, and to Europe, North America and New Zealand. Results per indicators are presented as in the articles without performing additional calculations. Out of 4171 initial search hits, 179 articles were analysed. Studies varied widely in indicators, research design, sample size and location and context. Quite some studies used small samples. No study analysed all aspects of sustainability simultaneously. Conventional systems had lower labour requirements per unit product, lower income risk per animal, higher production per animal per time unit, higher reproduction numbers, lower feed conversion ratio, lower land use, generally lower acidification and eutrophication potential per unit product, equal or better udder health for cows and equal or lower microbiological contamination. Organic systems had higher income per animal or full time employee, lower impact on biodiversity, lower eutrophication and acidification potential per unit land, equal or lower likelihood of antibiotic resistance in bacteria and higher beneficial fatty acid levels in cow milk. For most sustainability aspects, sometimes conventional and sometimes organic systems performed better, except for productivity, which was consistently higher in conventional systems. For many aspects and animal species, more data are needed to conclude on a difference between organic and conventional livestock production systems.


Subject(s)
Animal Husbandry , Animal Welfare , Chickens/physiology , Reproduction , Swine/physiology , Animals , Bacteria/genetics , Biodiversity , Cattle , Europe , Female , Livestock , Mammary Glands, Animal/physiology , New Zealand , North America
12.
J Dairy Sci ; 100(4): 2433-2453, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28161178

ABSTRACT

Efforts to reduce the carbon footprint of milk production through selection and management of low-emitting cows require accurate and large-scale measurements of methane (CH4) emissions from individual cows. Several techniques have been developed to measure CH4 in a research setting but most are not suitable for large-scale recording on farm. Several groups have explored proxies (i.e., indicators or indirect traits) for CH4; ideally these should be accurate, inexpensive, and amenable to being recorded individually on a large scale. This review (1) systematically describes the biological basis of current potential CH4 proxies for dairy cattle; (2) assesses the accuracy and predictive power of single proxies and determines the added value of combining proxies; (3) provides a critical evaluation of the relative merit of the main proxies in terms of their simplicity, cost, accuracy, invasiveness, and throughput; and (4) discusses their suitability as selection traits. The proxies range from simple and low-cost measurements such as body weight and high-throughput milk mid-infrared spectroscopy (MIR) to more challenging measures such as rumen morphology, rumen metabolites, or microbiome profiling. Proxies based on rumen samples are generally poor to moderately accurate predictors of CH4, and are costly and difficult to measure routinely on-farm. Proxies related to body weight or milk yield and composition, on the other hand, are relatively simple, inexpensive, and high throughput, and are easier to implement in practice. In particular, milk MIR, along with covariates such as lactation stage, are a promising option for prediction of CH4 emission in dairy cows. No single proxy was found to accurately predict CH4, and combinations of 2 or more proxies are likely to be a better solution. Combining proxies can increase the accuracy of predictions by 15 to 35%, mainly because different proxies describe independent sources of variation in CH4 and one proxy can correct for shortcomings in the other(s). The most important applications of CH4 proxies are in dairy cattle management and breeding for lower environmental impact. When breeding for traits of lower environmental impact, single or multiple proxies can be used as indirect criteria for the breeding objective, but care should be taken to avoid unfavorable correlated responses. Finally, although combinations of proxies appear to provide the most accurate estimates of CH4, the greatest limitation today is the lack of robustness in their general applicability. Future efforts should therefore be directed toward developing combinations of proxies that are robust and applicable across diverse production systems and environments.


Subject(s)
Lactation , Methane/biosynthesis , Animals , Breeding , Cattle , Female , Milk/chemistry , Rumen/metabolism
13.
J Dairy Sci ; 100(3): 2007-2016, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28109605

ABSTRACT

Feed efficiency in dairy cattle has gained much attention recently. Due to the cost-prohibitive measurement of individual feed intakes, combining data from multiple countries is often necessary to ensure an adequate reference population. It may then be essential to model genetic heterogeneity when making inferences about feed efficiency or selecting efficient cattle using genomic information. In this study, we constructed a marker × environment interaction model that decomposed marker effects into main effects and interaction components that were specific to each environment. We compared environment-specific variance component estimates and prediction accuracies from the interaction model analyses, an across-environment analyses ignoring population stratification, and a within-environment analyses using an international feed efficiency data set. Phenotypes included residual feed intake, dry matter intake, net energy in milk, and metabolic body weight from 3,656 cows measured in 3 broadly defined environments: North America (NAM), the Netherlands (NLD), and Scotland (SAC). Genotypic data included 57,574 single nucleotide polymorphisms per animal. The interaction model gave the highest prediction accuracy for metabolic body weight, which had the largest estimated heritabilities ranging from 0.37 to 0.55. The within-environment model performed the best when predicting residual feed intake, which had the lowest estimated heritabilities ranging from 0.13 to 0.41. For traits (dry matter intake and net energy in milk) with intermediate estimated heritabilities (0.21 to 0.50 and 0.17 to 0.53, respectively), performance of the 3 models was comparable. Genomic correlations between environments also were computed using variance component estimates from the interaction model. Averaged across all traits, genomic correlations were highest between NAM and NLD, and lowest between NAM and SAC. In conclusion, the interaction model provided a novel way to evaluate traits measured in multiple environments in which genetic heterogeneity may exist. This model allowed estimation of environment-specific parameters and provided genomic predictions that approached or exceeded the accuracy of competing within- or across-environment models.


Subject(s)
Gene-Environment Interaction , Lactation/genetics , Milk , Animals , Body Weight , Cattle , Eating/genetics , Female , Genetic Heterogeneity , Genotype
14.
J Dairy Sci ; 100(2): 855-870, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27939541

ABSTRACT

Phenotypes have been reviewed to select for lower-emitting animals in order to decrease the environmental footprint of dairy cattle products. This includes direct selection for breath measurements, as well as indirect selection via indicator traits such as feed intake, milk spectral data, and rumen microbial communities. Many of these traits are expensive or difficult to record, or both, but with genomic selection, inclusion of methane emission as a breeding goal trait is feasible, even with a limited number of registrations. At present, methane emission is not included among breeding goals for dairy cattle worldwide. There is no incentive to include enteric methane in breeding goals, although global warming and the release of greenhouse gases is a much-debated political topic. However, if selection for reduced methane emission became a reality, there would be limited consensus as to which phenotype to select for: methane in liters per day or grams per day, methane in liters per kilogram of energy-corrected milk or dry matter intake, or a residual methane phenotype, where methane production is corrected for milk production and the weight of the cow. We have reviewed the advantages and disadvantages of these traits, and discuss the methods for selection and consequences for these phenotypes.


Subject(s)
Dairying , Milk , Animals , Breeding , Cattle , Diet/veterinary , Female , Methane/biosynthesis , Phenotype
15.
J Dairy Sci ; 100(1): 412-427, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27865511

ABSTRACT

Feed efficiency (FE), characterized as the fraction of feed nutrients converted into salable milk or meat, is of increasing economic importance in the dairy industry. We conjecture that FE is a complex trait whose variation and relationships or partial efficiencies (PE) involving the conversion of dry matter intake to milk energy and metabolic body weight may be highly heterogeneous across environments or management scenarios. In this study, a hierarchical Bayesian multivariate mixed model was proposed to jointly infer upon such heterogeneity at both genetic and nongenetic levels on PE and variance components (VC). The heterogeneity was modeled by embedding mixed effects specifications on PE and VC in addition to those directly specified on the component traits. We validated the model by simulation and applied it to a joint analysis of a dairy FE consortium data set with 5,088 Holstein cows from 13 research stations in Canada, the Netherlands, the United Kingdom, and the United States. Although no differences were detected among research stations for PE at the genetic level, some evidence was found of heterogeneity in residual PE. Furthermore, substantial heterogeneity in VC across stations, parities, and ration was observed with heritability estimates of FE ranging from 0.16 to 0.46 across stations.


Subject(s)
Animal Feed , Bayes Theorem , Lactation/genetics , Animal Feed/economics , Animals , Cattle , Female , Milk/metabolism , Parity , Phenotype
16.
J Anim Sci ; 94(10): 4151-4166, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27898855

ABSTRACT

Methane (CH) is a product of enteric fermentation in ruminants, and it represents around 17% of global CH emissions. There has been substantial effort from the livestock scientific community toward tools that can help reduce this percentage. One approach is to select for lower emitting animals. To achieve this, accurate genetic parameters and identification of the genomic basis of CH traits are required. Therefore, the objectives of this study were 1) to perform a genomewide association study to identify SNP associated with several CH traits in Angus beef cattle (1,020 animals) and validate them in a lactating Holstein population (population 1 [POP1]; 205 animals); 2) to validate significant SNP for DMI and weight at test (WT) from a second Holstein population, from a previous study (population 2 [POP2]; 903 animals), in an Angus population; and 3) to evaluate 2 different residual CH traits and determine if the genes associated with CH also control residual CH traits. Phenotypes calculated for the genotyped Angus population included CH production (MeP), CH yield (MeY), CH intensity (MI), DMI, and WT. The Holstein population (POP1) was multiparous, with phenotypes on CH traits (MeP, MeY, and MI) plus genotypes. Additionally, 2 CH traits, residual genetic CH (RGM) and residual phenotypic CH (RPM), were calculated by adjusting MeP for DMI and WT. Estimated heritabilities in the Angus population were 0.30, 0.19, and 0.15 for MeP, RGM, and RPM, respectively, and genetic correlations of MeP with DMI and WT were 0.83 and 0.80, respectively. Estimated heritabilities in Holstein POP1 were 0.23, 0.30, and 0.42 for MeP, MeY, and MI, respectively. Strong associations with MeP were found on chromosomes 4, 12, 14, 20, and 30 at < 0.001, and those chromosomes also had significant SNP for DMI in Holstein POP1. In the Angus population, the number of significant SNP for MeP at < 0.005 was 3,304, and approximately 630 of those SNP also were important for DMI and WT. When a set (approximately 3,300) of significant SNP for DMI and WT in the Angus population was used to estimate genetic parameters for MeP and MeY in Holstein POP1, the genetic variance and, consequently, the heritability slightly increased, meaning that most of the genetic variation is largely captured by these SNP. Residual traits could be a good option to include in the breeding goal, as this would facilitate selection for lower emitting animals without compromising DMI and WT.


Subject(s)
Cattle/genetics , Cattle/metabolism , Genome-Wide Association Study , Methane/biosynthesis , Animals , Body Weight , Breeding , Female , Genetic Variation , Genetics, Population , Lactation/genetics , Parity , Red Meat
18.
J Dairy Sci ; 99(1): 443-57, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26547641

ABSTRACT

To include feed-intake-related traits in the breeding goal, accurate estimates of genetic parameters of feed intake, and its correlations with other related traits (i.e., production, conformation) are required to compare different options. However, the correlations between feed intake and conformation traits can vary depending on the population. Therefore, the objective was to estimate genetic correlations between 6 feed-intake-related traits and 7 conformation traits within dairy cattle from 2 countries, the Netherlands (NL) and the United States (US). The feed-intake-related traits were dry matter intake (DMI), residual feed intake (RFI), milk energy output (MilkE), milk yield (MY), body weight (BW), and metabolic body weight (MBW). The conformation traits were stature (ST), chest width (CW), body depth (BD), angularity (ANG), rump angle (RA), rump width (RW), and body condition score (BCS). Feed intake data were available for 1,665 cows in NL and for 1,920 cows in US, from 83 nutritional experiments (48 in NL and 35 in US) conducted between 1991 and 2011 in NL and between 2007 and 2013 in US. Additional conformation records from relatives of the animals with DMI records were added to the database, giving a total of 37,241 cows in NL and 28,809 in US with conformation trait information. Genetic parameters were estimated using bivariate animal model analyses. The model included the following fixed effects for feed-intake-related traits: location by experiment-ration, age of cow at calving modeled with a second order polynomial by parity class, location by year-season, and days in milk, and these fixed effects for the conformation traits: herd by classification date, age of cow at classification, and lactation stage at classification. Both models included additive genetic and residual random effects. The highest estimated genetic correlations involving DMI were with CW in both countries (NL=0.45 and US=0.61), followed by ST (NL=0.33 and US=0.57), BD (NL=0.26 and US=0.49), and BCS (NL=0.24 and US=0.46). The MilkE and MY were moderately correlated with ANG in both countries (0.33 and 0.47 in NL, and 0.36 and 0.48 in US). Finally, BW was highly correlated with CW (0.77 in NL and 0.84 in US) and with BCS (0.83 in NL and 0.85 in US). Feed-intake-related traits were moderately to highly genetically correlated with conformation traits (ST, CW, BD, and BCS) in both countries, making them potentially useful as predictors of DMI.


Subject(s)
Body Constitution/genetics , Cattle/genetics , Eating/genetics , Milk/metabolism , Animal Feed , Animals , Body Weight , Breeding , Cattle/physiology , Feeding Behavior , Female , Lactation , Netherlands , Parity , Phenotype , Pregnancy , United States
19.
J Dairy Sci ; 98(9): 6522-34, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26188577

ABSTRACT

With the aim of increasing the accuracy of genomic estimated breeding values for dry matter intake (DMI) in Holstein-Friesian dairy cattle, data from 10 research herds in Europe, North America, and Australasia were combined. The DMI records were available on 10,701 parity 1 to 5 records from 6,953 cows, as well as on 1,784 growing heifers. Predicted DMI at 70 d in milk was used as the phenotype for the lactating animals, and the average DMI measured during a 60- to 70-d test period at approximately 200 d of age was used as the phenotype for the growing heifers. After editing, there were 583,375 genetic markers obtained from either actual high-density single nucleotide polymorphism (SNP) genotypes or imputed from 54,001 marker SNP genotypes. Genetic correlations between the populations were estimated using genomic REML. The accuracy of genomic prediction was evaluated for the following scenarios: (1) within-country only, by fixing the correlations among populations to zero, (2) using near-unity correlations among populations and assuming the same trait in each population, and (3) a sharing data scenario using estimated genetic correlations among populations. For these 3 scenarios, the data set was divided into 10 sub-populations stratified by progeny group of sires; 9 of these sub-populations were used (in turn) for the genomic prediction and the tenth was used for calculation of the accuracy (correlation adjusted for heritability). A fourth scenario to quantify the benefit for countries that do not record DMI was investigated (i.e., having an entire country as the validation population and excluding this country in the development of the genomic predictions). The optimal scenario, which was sharing data, resulted in a mean prediction accuracy of 0.44, ranging from 0.37 (Denmark) to 0.54 (the Netherlands). Assuming near-unity among-country genetic correlations, the mean accuracy of prediction dropped to 0.40, and the mean within-country accuracy was 0.30. If no records were available in a country, the accuracy based on the other populations ranged from 0.23 to 0.53 for the milking cows, but were only 0.03 and 0.19 for Australian and New Zealand heifers, respectively; the overall mean prediction accuracy was 0.37. Therefore, there is a benefit in collaboration, because phenotypic information for DMI from other countries can be used to augment the accuracy of genomic evaluations of individual countries.


Subject(s)
Animal Feed/analysis , Energy Intake , Genomics/methods , International Cooperation , Animals , Australia , Breeding , Canada , Cattle , Denmark , Female , Genetic Markers , Genotype , Germany , Ireland , Lactation , Milk , Models, Theoretical , Netherlands , New Zealand , Phenotype , Polymorphism, Single Nucleotide
20.
Animal ; 9(9): 1431-40, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26055577

ABSTRACT

Measuring and mitigating methane (CH4) emissions from livestock is of increasing importance for the environment and for policy making. Potentially, the most sustainable way of reducing enteric CH4 emission from ruminants is through the estimation of genomic breeding values to facilitate genetic selection. There is potential for adopting genetic selection and in the future genomic selection, for reduced CH4 emissions from ruminants. From this review it has been observed that both CH4 emissions and production (g/day) are a heritable and repeatable trait. CH4 emissions are strongly related to feed intake both in the short term (minutes to several hours) and over the medium term (days). When measured over the medium term, CH4 yield (MY, g CH4/kg dry matter intake) is a heritable and repeatable trait albeit with less genetic variation than for CH4 emissions. CH4 emissions of individual animals are moderately repeatable across diets, and across feeding levels, when measured in respiration chambers. Repeatability is lower when short term measurements are used, possibly due to variation in time and amount of feed ingested prior to the measurement. However, while repeated measurements add value; it is preferable the measures be separated by at least 3 to 14 days. This temporal separation of measurements needs to be investigated further. Given the above issue can be resolved, short term (over minutes to hours) measurements of CH4 emissions show promise, especially on systems where animals are fed ad libitum and frequency of meals is high. However, we believe that for short-term measurements to be useful for genetic evaluation, a number (between 3 and 20) of measurements will be required over an extended period of time (weeks to months). There are opportunities for using short-term measurements in standardised feeding situations such as breath 'sniffers' attached to milking parlours or total mixed ration feeding bins, to measure CH4. Genomic selection has the potential to reduce both CH4 emissions and MY, but measurements on thousands of individuals will be required. This includes the need for combined resources across countries in an international effort, emphasising the need to acknowledge the impact of animal and production systems on measurement of the CH4 trait during design of experiments.


Subject(s)
Animal Feed/analysis , Digestion/physiology , Livestock/genetics , Methane/biosynthesis , Quantitative Trait, Heritable , Ruminants/genetics , Selection, Genetic , Animals , Breeding/methods , Data Collection/methods , Livestock/physiology , Ruminants/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...