Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 384(6695): 546-551, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696550

ABSTRACT

Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater. In this work, we implemented a super-resolution technique that localizes and arranges atoms on a sub-50-nm scale, without any fundamental limit in resolution. We demonstrate this technique by creating a bilayer of dysprosium atoms and observing dipolar interactions between two physically separated layers through interlayer sympathetic cooling and coupled collective excitations. At 50-nm distance, dipolar interactions are 1000 times stronger than at 500 nm. For two atoms in optical tweezers, this should enable purely magnetic dipolar gates with kilohertz speed.

2.
Nat Commun ; 15(1): 3566, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670953

ABSTRACT

The dipolar interaction can be attractive or repulsive, depending on the position and orientation of the dipoles. Constraining atoms to a plane with their magnetic moment aligned perpendicularly leads to a largely side-by-side repulsion and generates a dipolar barrier which prevents atoms from approaching each other. We show experimentally and theoretically how this can suppress dipolar relaxation, the dominant loss process in spin mixtures of highly magnetic atoms. Using dysprosium, we observe an order of magnitude reduction in the relaxation rate constant, and another factor of ten is within reach based on the models which we have validated with our experimental study. The loss suppression opens up many new possibilities for quantum simulations with spin mixtures of highly magnetic atoms.

3.
Opt Express ; 30(21): 37426-37435, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258331

ABSTRACT

We report a high-finesse bow-tie cavity designed for atomic physics experiments with Rydberg atom arrays. The cavity has a finesse of 51,000 and a waist of 7.1 µm at the cesium D2 line (852 nm). With these parameters, the cavity is expected to induce strong coupling between a single atom and a single photon, corresponding to a cooperativity per traveling mode of 35 at the cavity waist. To trap and image atoms, the cavity setup utilizes two in-vacuum aspheric lenses with a numerical aperture (NA) of 0.35 and is capable of housing NA = 0.5 microscope objectives. In addition, the large atom-mirror distance (≳1.5 cm) provides good optical access and minimizes stray electric fields at the position of the atoms. This cavity setup can operate in tandem with a Rydberg array platform, creating a fully connected system for quantum simulation and computation.

4.
Phys Rev Lett ; 128(9): 093401, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35302815

ABSTRACT

We observe and study a special ground state of bosons with two spin states in an optical lattice: the spin-Mott insulator, a state that consists of repulsively bound pairs that is insulating for both spin and charge transport. Because of the pairing gap created by the interaction anisotropy, it can be prepared with low entropy and can serve as a starting point for adiabatic state preparation. We find that the stability of the spin-Mott state depends on the pairing energy, and observe two qualitatively different decay regimes, one of which exhibits protection by the gap.

5.
Phys Rev Lett ; 126(16): 163203, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33961481

ABSTRACT

Mott insulator plateaus in optical lattices are a versatile platform to study spin physics. Using sites occupied by two bosons with an internal degree of freedom, we realize a uniaxial single-ion anisotropy term proportional to (S^{z})^{2} that plays an important role in stabilizing magnetism for low-dimensional magnetic materials. Here we explore nonequilibrium spin dynamics and observe a resonant effect in the spin alignment as a function of lattice depth when exchange coupling and on-site anisotropy are similar. Our results are supported by many-body numerical simulations and are captured by the analytical solution of a two-site model.

6.
Appl Opt ; 56(19): 5436-5443, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-29047501

ABSTRACT

We describe the design, construction, and characterization of a medium-finesse Fabry-Perot cavity for simultaneous frequency stabilization of two lasers operating at 960 and 780 nm wavelengths, respectively. The lasers are applied in experiments with ultracold rubidium Rydberg atoms, for which a combined laser linewidth similar to the natural Rydberg linewidth (≈10 kHz) is desired. The cavity, with a finesse of ≈1500, is used to reduce the linewidth of the lasers to below this level. By using a spacer made of ultra low expansion (ULE) glass with active temperature stabilization, the residual frequency drift is limited to ≲1 MHz/day. The design optimizes for ease of construction, robustness, and affordability.

SELECTION OF CITATIONS
SEARCH DETAIL