Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 158(11): 3421-30, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20728971

ABSTRACT

Daily and seasonal variation in the total elemental, organic carbon (OC) and elemental carbon (EC) content and mass of PM(2.5) were studied at industrial, urban, suburban and agricultural/rural areas. Continuous (optical Dustscan, standard tapered element oscillating micro-balance (TEOM), TEOM with filter dynamics measurement system), semi-continuous (Partisol filter-sampling) and non-continuous (Dekati-impactor sampling and gravimetry) methods of PM(2.5) mass monitoring were critically evaluated. The average elemental fraction accounted for 2-6% of the PM(2.5) mass measured by gravimetry. Metals, like K, Mn, Fe, Cu, Zn and Pb were strongly inter-correlated, also frequently with non-metallic elements (P, S, Cl and/or Br) and EC/OC. A high OC/EC ratio (2-9) was generally observed. The total carbon content of PM(2.5) ranged between 3 and 77% (averages: 12-32%), peaking near industrial/heavy trafficked sites. Principal component analysis identified heavy oil burning, ferrous/non-ferrous industry and vehicular emissions as the main sources of metal pollution.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollutants/chemistry , Belgium , Carbon/analysis , Metals/analysis , Particle Size , Particulate Matter/chemistry , Seasons
2.
J Environ Monit ; 10(10): 1148-57, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19244638

ABSTRACT

Mass, major ionic components (MICs) of PM2.5, and related gaseous pollutants (SO2, NO(x), NH3, HNO2, and HNO3) were monitored over six locations of different anthropogenic influence (industrial, urban, suburban, and rural) in Belgium. SO4(2-), NO3-, NH4+, and Na+ were the primary ions of PM2.5 with averages diurnal concentrations ranging from 0.4-4.5, 0.3-7.6, 0.9-4.9, and 0.4-1.2 microg m(-3), respectively. MICs formed 39% of PM2.5 on an average, but it could reach up to 80-98%. The SO2, NO, NO2, HNO2, and HNO3 levels showed high seasonal and site-specific fluctuations. The NH3 levels were similar over all the sites (2-6 microg m(-3)), indicating its relation to the evenly distributed animal husbandry activities. The sulfur and nitrogen oxidation ratios for PM2.5 point towards a low-to-moderate formation of secondary sulfate and nitrate aerosols over five cities/towns, but their fairly intensive formation over the rural Wingene. Cluster analysis revealed the association of three groups of compounds in PM2.5: (i) NH4NO3, KNO3; (ii) Na2SO4; and (iii) MgCl2, CaCl2, MgF2, CaF2, corresponding to anthropogenic, sea-salt, and mixed (sea-salt + anthropogenic) aerosols, respectively. The neutralization and cation-to-anion ratios indicate that MICs of PM2.5 appeared mostly as (NH4)2SO4 and NH4NO3 salts. Sea-salt input was maximal during winter reaching up to 12% of PM2.5. The overall average Cl-loss for sea-salt particles of PM2.5 at the six sites varied between 69 and 96% with an average of 87%. Principal component analysis revealed vehicular emission, coal/wood burning and animal farming as the dominating sources for the ionic components of PM2.5.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Aerosols/analysis , Aerosols/chemistry , Air Pollutants/chemistry , Anions/analysis , Anions/chemistry , Belgium , Cluster Analysis , Environmental Monitoring , Nitrogen/analysis , Nitrogen/chemistry , Particle Size , Particulate Matter/chemistry , Seasons , Seawater/chemistry , Sodium Chloride/analysis , Sodium Chloride/chemistry , Sulfur/analysis , Sulfur/chemistry , Weather
3.
Anal Chem ; 75(4): 851-9, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12622376

ABSTRACT

A versatile Monte Carlo program for quantitative particle analysis in electron probe X-ray microanalysis is presented. The program includes routines for simulating electron-solid interactions in microparticles lying on a flat surface and calculating the generated X-ray signal. Simulation of the whole X-ray spectrum as well as phi(z) curves is possible. The most important facility of the program is the reverse Monte Carlo quantification of the chemical composition of microparticles, including low-Z elements, such as C, N, O, and F. This quantification method is based on the combination of a single scattering Monte Carlo simulation and a robust successive approximation. An iteration procedure is employed; in each iteration step, the Monte Carlo simulation program calculates characteristic X-ray intensities, and a new set of concentration values for chemical elements in the particle is determined. When the simulated X-ray intensities converge to the measured ones, the input values of elemental concentrations used for the simulation are determined as chemical compositions of the particle. This quantification procedure was evaluated by investigating various types of standard particles, and good accuracy of the methodology was demonstrated. A methodology for heterogeneity assessment of single particles is also described.

SELECTION OF CITATIONS
SEARCH DETAIL
...