Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 82(3): 806-26, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23464545

ABSTRACT

A genetic survey of Barbus spp. populations in the Marches Region (Adriatic River basins), central Italy, was carried out using mitochondrial and nuclear markers (partial D-loop, cyt b sequences and microsatellite loci) in order to ascertain their systematic position and to address their genetic structure which is key to conservation action planning. Analyses were conducted on sequences obtained from 91 individuals collected from eight sampling sites in five different rivers, from two specimens provided by the Ichthyological Centre of Rome and mitochondrial sequences of Barbus spp. retrieved from GenBank. Presumptive classification based on external morphological characters was not confirmed by genetic analysis, by means of which all specimens collected in the Marches Region were ascribed to Barbus plebejus. Genetic diversity values (h and π) of sampling groups were all different from 0 except the one sample collected from the upper reaches of the River Tenna, above a hydroelectric dam. Population connectivity and colonization patterns of the studied area were inferred from an analysis of molecular variance distribution and evolutionary relationships among haplotypes. The results point to different levels of isolation among sampling groups due to ecological and anthropogenic factors and the effect of an artificial barrier on genetic variability and conservation status of the population. Finally, this study confirms the uncertainty associated with systematic classification of Barbus spp. based on morphological characters due to the phenotypic plasticity of the species.


Subject(s)
Conservation of Natural Resources , Cyprinidae/genetics , Genetic Variation , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetics, Population , Haplotypes , Italy , Microsatellite Repeats , Phylogeny , Rivers , Sequence Analysis, DNA
2.
Mol Ecol ; 10(9): 2163-75, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11555259

ABSTRACT

The dusky grouper, Epinephelus marginatus, inhabits coastal reefs in the Mediterranean Sea and Atlantic Ocean. A decline in the abundance of this long-lived protogynous hermaphrodite has led to its listing as an endangered species in the Mediterranean, and heightened management concerns regarding its genetic variability and population substructure. To address these concerns, we analysed genetic variation at seven microsatellite and 28 allozyme loci in dusky groupers sampled from seven areas (for microsatellites) and three areas (for allozymes) in the west-central Mediterranean. Levels of genetic variability were higher for microsatellites than for allozymes (mean H(E) = 0.78 and 0.07, respectively), but similar to those observed in other marine fishes with comparable markers. Both microsatellites and allozymes revealed significant genetic differentiation among all areas analysed with each class of marker, but the magnitude of differentiation revealed by allozymes over three locales (F(ST) = 0.214) was greater than that detected with microsatellites over seven areas, or over the three areas shared with the allozyme analysis (F(ST) = 0.018 and approximately 0, respectively). A large proportion of the allozyme differentiation was due to a single locus (ADA*) possibly influenced by selection, but allozyme differentiation over the three areas was still highly significant (F(ST) = 0.06, P < 0.0001), and the 95% confidence intervals for allozyme and microsatellite F(ST) did not overlap when this locus was excluded. There was no evidence of isolation by distance with either class of markers. Our results lead us to conclude that dusky groupers are not panmictic in the Mediterranean Sea and suggest that they should be managed on a local basis. However, more work is needed to elucidate genetic relationships among populations.


Subject(s)
Isoenzymes/genetics , Microsatellite Repeats , Perciformes/genetics , Animals , Data Interpretation, Statistical , Genetic Variation/genetics , Genotype , Mediterranean Sea
4.
Cytogenet Cell Genet ; 84(1-2): 28-30, 1999.
Article in English | MEDLINE | ID: mdl-10343094

ABSTRACT

Two zebrafish AluI repeats were localized in metaphase chromosomes by means of the primed in situ (PRINS) labeling technique, using oligonucleotide primers based on published sequences. An AT-rich, tandemly repeated, long AluI restriction fragment (RFAL1) labeled the (peri)centromeric regions of all chromosomes. The GC-rich short fragment (RFAS) was found to be localized in the paracentromeric regions of 17 chromosome pairs, which were mostly subtelocentric. The RFAS labeling pattern generally fits the previously described chromomycin A3 (CMA3) staining pattern. The differential composition of heterochromatin in zebrafish chromosomes is discussed.


Subject(s)
Alu Elements , Chromosome Mapping/methods , In Situ Hybridization, Fluorescence/methods , Zebrafish/genetics , Animals , Base Sequence , Centromere/genetics , DNA Primers/genetics , Female , Heterochromatin/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...