Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 344: 123237, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38159625

ABSTRACT

Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.


Subject(s)
Microplastics , Water Quality , Humans , Plastics , Sand , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial
2.
J Am Nutr Assoc ; 41(8): 788-795, 2022.
Article in English | MEDLINE | ID: mdl-35512757

ABSTRACT

Dysbiosis is recognized as a new cardiovascular disease (CVD) risk factor in hemodialysis (HD) patients because it is linked to increased generation in the gut of uremic toxins such as trimethylamine N-Oxide (TMAO) from dietary precursors (choline, betaine, or L-carnitine). Nutritional strategies have been proposed to modulate the gut microbiota and reduce the production of these toxins. This study aimed to evaluate the effect of amylose-resistant starch (RS) supplementation on TMAO plasma levels in HD patients.We conducted a randomized, double-blind, placebo-controlled trial (NCT02706808) with patients undergoing HD enrolled in a previous pilot study. The participants were allocated to RS or placebo groups to receive 16 g/d of RS or placebo for 4 weeks. Plasma TMAO, choline, and betaine levels were measured with LC-MS/MS. Fecal microbiome composition was evaluated by 16S ribosomal RNA sequencing, followed by a search for TMA-associated taxa. Anthropometric, routine biochemical parameters, and food intake were evaluated.Twenty-five participants finished the study, 13 in the RS group, and 12 in the placebo group. RS supplementation did not reduce TMAO plasma levels. Moreover, no significant alterations were observed in choline, betaine, anthropometric, biochemical parameters, or food intake in both groups. Likewise, RS was not found to exert any influence on the proportion of potential TMA-producing bacterial taxa in fecal matter.RS supplementation did not influence plasma TMAO, choline, betaine, or fecal taxa potentially linked to TMAO. Thus, RS does not seem to modify the TMA-associated bacterial taxa, precursors of TMAO.Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2021.1967814 .


Subject(s)
Betaine , Resistant Starch , Humans , Pilot Projects , Chromatography, Liquid , Tandem Mass Spectrometry , Choline , Renal Dialysis/adverse effects , Bacteria , Dietary Supplements
3.
Extremophiles ; 20(6): 875-884, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27709303

ABSTRACT

The Antarctic soil microbial community has a crucial role in the growth and stabilization of higher organisms, such as vascular plants. Analysis of the soil microbiota composition in that extreme environmental condition is crucial to understand the ecological importance and biotechnological potential. We evaluated the efficiency of isolation and abundance of strict anaerobes in the vascular plant Deschampsia antarctica rhizosphere collected in the Antarctic's Admiralty Bay and associated biodiversity to metabolic perspective and enzymatic activity. Using anaerobic cultivation methods, we identified and isolated a range of microbial taxa whose abundance was associated with Plant Growth-Promoting Bacteria (PGPB) and presences were exclusively endemic to the Antarctic continent. Firmicutes was the most abundant phylum (73 %), with the genus Clostridium found as the most isolated taxa. Here, we describe two soil treatments (oxygen gradient and heat shock) and 27 physicochemical culture conditions were able to increase the diversity of anaerobic bacteria isolates. Heat shock treatment allowed to isolate a high percentage of new species (63.63 %), as well as isolation of species with high enzymatic activity (80.77 %), which would have potential industry application. Our findings contribute to the understanding of the role of anaerobic microbes regarding ecology, evolutionary, and biotechnological features essential to the Antarctic ecosystem.


Subject(s)
Bacteria, Anaerobic/isolation & purification , Industrial Microbiology , Microbiota , Poaceae/microbiology , Rhizosphere , Adaptation, Physiological , Antarctic Regions , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/enzymology , Bacteria, Anaerobic/genetics , Cold Temperature , Soil Microbiology
4.
PLoS One ; 8(1): e55558, 2013.
Article in English | MEDLINE | ID: mdl-23383224

ABSTRACT

OBJECTIVE: This study aimed to investigate the possible topical effect of a broad-spectrum antibiotic on dental biofilm formed in situ in the absence or presence of sucrose. METHODS: A crossover study was conducted in three phases of 14 days each, during which 11 volunteers wore palatal devices containing 6 enamel blocks covered with meshes to allow biofilm formation. Dental blocks were extraorally submitted to a 20% sucrose solution at three different frequencies of exposure (0, 3 and 8 times/day), and to a suspension of amoxicillin/clavulanate potassium (A/CP) or a placebo (P) suspension at an 8-hour time interval application regimen. On the 14(th) day of each phase, biofilms were collected for microbiological (conventional culture) and molecular (Denaturing Gradient Gel Electrophoresis--DGGE) analyses. RESULTS: In the absence of sucrose exposure (SE) and at the 3-time daily frequency, dental biofilms treated with A/CP showed lower total biofilm weight and lower counts of total microbiota than the ones treated with P (p>0.05). A/CP presented higher counts of Candida spp. when compared with P in the presence of SE, especially at the 8-time daily frequency (p<0.05). Considering the DGGE analysis, the mean number of bands was higher for P (p>0.05), regardless of SE. However, DGGE profiles demonstrated large interindividual variability. CONCLUSION: Both conventional culture and DGGE have demonstrated some differences on total microbiota of dental biofilms when exposed to the A/CP or P suspensions, mainly in the absence of sucrose, which suggests a possible topical effect of the sugar-free A/CP suspension on dental biofilm.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Dental Plaque/drug therapy , Dental Plaque/microbiology , Administration, Topical , Adult , Anti-Bacterial Agents/administration & dosage , Colony Count, Microbial , Cross-Over Studies , Female , Humans , Male , Metagenome/genetics , RNA, Ribosomal, 16S , Sucrose/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...