Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Res ; 2021: 6671287, 2021.
Article in English | MEDLINE | ID: mdl-33681389

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by the flagellated protozoa of the genus Leishmania that affects millions of people around the world. Drugs employed in the treatment of leishmaniasis have limited efficacy and induce local and systemic side effects to the patients. Natural products are an interesting alternative to treat leishmaniasis, because some purified molecules are selective toward parasites and not to the host cells. Thus, the aim of the present study was to compare the in vitro antileishmanial activity of the triterpenes betulin (Be), lupeol (Lu), and ursolic acid (UA); analyze the physiology and morphology of affected organelles; analyze the toxicity of selected triterpenes in golden hamsters; and study the therapeutic activity of triterpenes in hamsters infected with L. (L.) infantum as well as the cellular immunity induced by studied molecules. The triterpenes Lu and UA were active on promastigote (IC50 = 4.0 ± 0.3 and 8.0 ± 0.2 µM, respectively) and amastigote forms (IC50 = 17.5 ± 0.4 and 3.0 ± 0.2 µM, respectively) of L. (L.) infantum, and their selectivity indexes (SI) toward amastigote forms were higher (≥13.4 and 14, respectively) than SI of miltefosine (2.7). L. (L.) infantum promastigotes treated with Lu and UA showed cytoplasmic degradation, and in some of these areas, cell debris were identified, resembling autophagic vacuoles, and parasite mitochondria were swelled, fragmented, and displayed membrane potential altered over time. Parasite cell membrane was not affected by studied triterpenes. Studies of toxicity in golden hamster showed that Lu did not alter blood biochemical parameters associated with liver and kidney functions; however, a slight increase of aspartate aminotransferase level in animals treated with 2.5 mg/kg of UA was detected. Lu and UA triterpenes eliminated amastigote forms in the spleen (87.5 and 95.9% of reduction, respectively) and liver of infected hamster (95.9 and 99.7% of reduction, respectively); and UA showed similar activity at eliminating amastigote forms in the spleen and liver than amphotericin B (99.2 and 99.8% of reduction). The therapeutic activity of both triterpenes was associated with the elevation of IFN-γ and/or iNOS expression in infected treated animals. This is the first comparative work showing the in vitro activity, toxicity, and therapeutic activity of Lu and UA in the chronic model of visceral leishmaniasis caused by L. (L.) infantum; additionally, both triterpenes activated cellular immune response in the hamster model of visceral leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Pentacyclic Triterpenes/pharmacology , Animals , Antiprotozoal Agents/chemistry , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Immunomodulation/drug effects , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Molecular Structure , Pentacyclic Triterpenes/chemistry
2.
Bioorg Chem ; 102: 104056, 2020 09.
Article in English | MEDLINE | ID: mdl-32653607

ABSTRACT

Leishmaniasis is an infectious disease caused by protozoan parasites of the genus Leishmania. The treatment of all forms of leishmaniasis relies on first-line drug, pentavalent antimonial, and in cases of drug failure, the second-line drug amphotericin B has been used. Besides the high toxicity of drugs, parasites can be resistant to antimonial in some areas of the World, making it necessary to perform further studies for the characterization of new antileishmanial agents. Thus, the aim of the present work was to evaluate the leishmanicidal activity of tolnaftate, a selective reversible and non-competitive inhibitor of the fungal enzyme squalene epoxidase, which is involved in the biosynthesis of ergosterol, essential to maintain membrane physiology in fungi as well as trypanosomatids. Tolnaftate eliminated promastigote forms of L. (L.) amazonensis, L. (V.) braziliensis and L. (L.) infantum (EC50 ~ 10 µg/mL and SI ~ 20 for all leishmanial species), and intracellular amastigote forms of all studied species (EC50 ~ 23 µg/mL in infections caused by dermatotropic species; and 11.7 µg/mL in infection caused by viscerotropic species) with high selectivity toward parasites [SI ~ 8 in infections caused by dermatotropic species and 17.4 for viscerotropic specie]. Promastigote forms of L. (L.) amazonensis treated with the EC50 of tolnaftate displayed morphological and physiological changes in the mitochondria and cell membrane. Additionally, promastigote forms treated with tolnaftate EC50 reduced the level of ergosterol by 5.6 times in comparison to the control parasites. Altogether, these results suggest that tolnaftate has leishmanicidal activity towards Leishmania sp., is selective, affects the cell membrane and mitochondria of parasites and, moreover, inhibits ergosterol production in L. (L.) amazonensis.


Subject(s)
Antifungal Agents/therapeutic use , Antiprotozoal Agents/therapeutic use , Ergosterol/antagonists & inhibitors , Leishmania/drug effects , Leishmaniasis/drug therapy , Tolnaftate/therapeutic use , Animals , Antifungal Agents/pharmacology , Antiprotozoal Agents/pharmacology , Cell Survival , Humans , Mice , Tolnaftate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...