Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 193(2): 74, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33469714

ABSTRACT

Sea ice is one of the main components of the cryosphere that modifies the exchange of heat and moisture between the ocean and atmosphere, regulating the global climate. In this sense, it is important to identify the concentration of sea ice in different regions of Antarctica in order to measure the impact of environmental changes on the region's ecosystem. The objective of this study was to evaluate the performance of the multiple linear regression and Box-Jenkins methods for predicting the concentration of sea ice along the northwest coast of the Antarctic Peninsula. Sea ice concentration data from May to November for the period 1979-2018 were extracted from passive remote sensors including a scanning multichannel microwave radiometer, special sensor microwave imager, and special sensor microwave imager/sounder. Meteorological variables from the atmospheric reanalysis model ERA5 of the European Center for Medium-Range Weather Forecasts were used as predictor variables, and the leave-one-out cross-validation technique was used to calibrate and validate the models. It was found that both statistical models have similar performance when analyzing residual analysis results, root mean square error of cross-validation, and final accuracy and residual standard deviation, these responses being related to the regionalization of the study area and to the Box-Jenkins presents strong, homogeneous, and stable correlations in the time series modeled for each pixel.


Subject(s)
Ecosystem , Ice Cover , Antarctic Regions , Environmental Monitoring , Models, Statistical
2.
Environ Monit Assess ; 192(9): 559, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32747987

ABSTRACT

This article aims to analyze the dynamics of freezing and thawing of Antarctic lakes located in ice-free areas on Nelson Island and Fildes Peninsula, where response to changes in air temperature and precipitation rates occur rapidly, during the period from July 2016 to December 2018. In these places, which are difficult to access, remote sensing is an important alternative, especially considering the use of active remote sensors such as the Synthetic Aperture Radar (SAR), which has less restriction regarding the presence of clouds over the study area. Three backscatter thresholds were defined (σ) for the identification of the physical state of the water of the lakes of the study region, applied in Sentinel 1A SAR (S1A) images under Horizontal Horizontal (HH) polarization and Interferometric Wide (IW) imaging mode. These images, along with the air temperature data obtained by the Interim Re-Analysis (ERA-Interim) atmospheric reanalysis model, provided the evidence for the interpretation of the freezing and thawing periods of the lakes. The thresholds applied for the definition of the physical state of the lake water were greater than - 14 dB for frozen water, between - 14 and - 17 dB for the surface, with up to 60% of their frozen area, and less than - 17 dB for open water. The temporal analysis revealed that the lakes start to thaw in October, become completely thawed in February, and freeze again in March. Nevertheless, it can be said that the S1A satellite allows a satisfactory identification of the liquid and solid phases of the water in the lakes of the study region.


Subject(s)
Lakes , Radar , Antarctic Regions , Environmental Monitoring , Freezing , Islands
SELECTION OF CITATIONS
SEARCH DETAIL
...