Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 74: 103238, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38870780

ABSTRACT

Oxidative stress (OS) and endoplasmic reticulum stress (ERS) are at the genesis of placental disorders observed in preeclampsia, intrauterine growth restriction, and maternal hypothyroidism. In this regard, cationic manganese porphyrins (MnPs) comprise potent redox-active therapeutics of high antioxidant and anti-inflammatory potential, which have not been evaluated in metabolic gestational diseases yet. This study evaluated the therapeutic potential of two MnPs, [MnTE-2-PyP]5+ (MnP I) and [MnT(5-Br-3-E-Py)P]5+ (MnP II), in the fetal-placental dysfunction of hypothyroid rats. Hypothyroidism was induced by administration of 6-Propyl-2-thiouracil (PTU) and treatment with MnPs I and II 0.1 mg/kg/day started on the 8th day of gestation (DG). The fetal and placental development, and protein and/or mRNA expression of antioxidant mediators (SOD1, CAT, GPx1), hypoxia (HIF1α), oxidative damage (8-OHdG, MDA), ERS (GRP78 and CHOP), immunological (TNFα, IL-6, IL-10, IL-1ß, IL-18, NLRP3, Caspase1, Gasdermin D) and angiogenic (VEGF) were evaluated in the placenta and decidua on the 18th DG using immunohistochemistry and qPCR. ROS and peroxynitrite (PRX) were quantified by fluorometric assay, while enzyme activities of SOD, GST, and catalase were evaluated by colorimetric assay. MnPs I and II increased fetal body mass in hypothyroid rats, and MnP I increased fetal organ mass. MnPs restored the junctional zone morphology in hypothyroid rats and increased placental vascularization. MnPs blocked the increase of OS and ERS mediators caused by hypothyroidism, showing similar levels of expression of HIFα, 8-OHdG, MDA, Gpx1, GRP78, and Chop to the control. Moreover, MnPs I and/or II increased the protein expression of SOD1, Cat, and GPx1 and restored the expression of IL10, Nlrp3, and Caspase1 in the decidua and/or placenta. However, MnPs did not restore the low placental enzyme activity of SOD, CAT, and GST caused by hypothyroidism, while increased the decidual and placental protein expression of TNFα. The results show that treatment with MnPs improves the fetal-placental development and the placental inflammatory state of hypothyroid rats and protects against oxidative stress and reticular stress caused by hypothyroidism at the maternal-fetal interface.


Subject(s)
Hypothyroidism , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Animals , Pregnancy , Female , Rats , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Inflammasomes/metabolism , Disease Models, Animal , Placenta/metabolism , Placenta/drug effects , Placentation/drug effects , Antioxidants/pharmacology , Endoplasmic Reticulum Stress/drug effects , Fetal Development/drug effects , Manganese , Metalloporphyrins/pharmacology , Endoplasmic Reticulum Chaperone BiP
2.
Theriogenology ; 210: 234-243, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37542738

ABSTRACT

Sex steroids and antioxidant enzymes modulate uterine and placental physiology. Failures in the expression, signaling, and/or secretion of these mediators are associated with female infertility and gestational problems. However, there is no data on the expression profile of receptors for sex steroids and antioxidant enzymes in the maternal-fetal interface of domestic cats. Uterus and placenta samples from non-pregnant diestrus cats and cats in mid- and late pregnancy were used to analyze the protein and gene expression of the receptors for estrogen alpha (ERα), progesterone (PR), and androgen (AR) and the antioxidant enzymes superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 1 (GPX1) by immunohistochemistry and qPCR. Higher uterine expression of ERα, Pr, and Sod1 was observed in the pregnant cats, especially in mid-pregnancy, compared to non-pregnant diestrus cats, as well as reduced endometrial catalase immunostaining. In the placenta, the mRNA expression of Erα, Pr, Ar, and Gpx1 was higher in late pregnancy in relation to mid-pregnancy. Moreover, weak or no placental expression was observed for catalase in mid- and late pregnancy, while strong immunostaining was observed for AR in trophoblasts and decidual cells in mid-pregnancy. The findings of this study demonstrated that pregnancy in female cats increases the uterine expression of sex steroid receptors and antioxidant enzymes, and that the placental expression of these mediators varies according to gestational age.


Subject(s)
Antioxidants , Estrogen Receptor alpha , Pregnancy , Cats , Female , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Antioxidants/metabolism , Catalase/genetics , Catalase/metabolism , Superoxide Dismutase-1/metabolism , Placenta/metabolism , Gonadal Steroid Hormones/metabolism , Progesterone/metabolism , Estrogens/metabolism , Androgens/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...