Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mediators Inflamm ; 2020: 1839762, 2020.
Article in English | MEDLINE | ID: mdl-33110395

ABSTRACT

Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1ß. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.


Subject(s)
Cytokines/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Simvastatin/therapeutic use , Animals , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Nitric Oxide/metabolism , Peritoneal Lavage , Stem Cells
2.
J Inflamm (Lond) ; 10(1): 34, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24175969

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) can emerge from certain pathologies, such as sepsis, fat embolism and leptospirosis, in which the levels of unesterified fatty acids are increased in the patient's plasma. ARDS is characterized by edema formation, and edema resolution occurs mainly due to the pneumocyte Na/K-ATPase activity. As previously described, increased oleic acid (OA) plasma concentrations induce lung injury by interfering with sodium transport. The first aim of this study was to develop a radioactivity-free assay to detect Na,K-ATPase activity ex vivo using a model of OA-induced lung injury in mice. We also investigated the relationship between Na/K-ATPase inhibition and OA-induced lung injury using ouabain-induced lung injury as a comparison, because of the well-described effect of ouabain as a Na/K-ATPase inhibitor. METHODS: We developed a Na/K-ATPase assay based on the capture of non-radioactive Rb+ ions by mice lung tissue in the absence or presence of ouabain, a specific Na/K-ATPase inhibitor. Rb+ incorporation into the lung was measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) after lung tissue mineralization. Na/K-ATPase activity was considered as the difference between Rb+ incorporation in the absence and in the presence of ouabain. Bronchoalveolar lavage fluid was collected for lung injury assessment. For this assessment, cell counting, lipid body enumeration and lipid mediator concentrations were measured. Histological analyses were used to determinate lung pathology. Whole body plethysmographic analysis was performed to assay lung function. RESULTS: The lung Na/K-ATPase activity of mice was completely inhibited by an OA dose of 10 µmol, an effect also obtained with 10-3 µmol of ouabain, as demonstrated by the decreased Rb+ incorporation in the lungs. The same OA dose induced lung edema and inflammation with cell influx, lipid body formation, and leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) production. Ouabain also induced lung inflammation, as detected by histological examinations. As far as we know, this is the first time that ouabain-induced lung injury was shown. Both OA and ouabain induced functional lung pathology in mice simultaneously with inhibition of the lung Na/K-ATPase activity. CONCLUSIONS: We developed a new non-radioactive assay to quantified Na/K-ATPase in vivo. OA and ouabain inhibited in vivo Na/K-ATPase activity in the lungs and induced lung injury. Our data reinforce the idea that Na/K-ATPase inhibitors may worsen lung injury in specific pathological conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...