Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 133(10): 3625-34, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21341653

ABSTRACT

Mixed MD/MC simulation at fixed difference in chemical potential (Δµ) between two lipid types provides a computational indicator of the relative affinities of the two lipids for different environments. Applying this technique to ternary DPPC/DOPC/cholesterol bilayers yields a DPPC/DOPC ratio that increases with increasing cholesterol content at fixed Δµ, consistent with the known enrichment of DPPC and cholesterol-rich in liquid-ordered phase domains in the fluid-fluid coexistence region of the ternary phase diagram. Comparison of the cholesterol-dependence of PC compositions at constant Δµ with experimentally measured coexistence tie line end point compositions affords a direct test of the faithfulness of the atomistic model to experimental phase behavior. DPPC/DOPC ratios show little or no dependence on cholesterol content at or below 16% cholesterol in the DOPC-rich region of the composition diagram, indicating cooperativity in the favorable interaction between DPPC and cholesterol. The relative affinity of DPPC and DOPC for high cholesterol bilayer environments in simulations is explicitly shown to depend on the degree of cholesterol alignment with the bilayer normal, suggesting that a source of the cooperativity is the composition dependence of cholesterol tilt angle distributions.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Cholesterol/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Molecular Dynamics Simulation , Thermodynamics
2.
Biophys J ; 95(6): 2647-57, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18567631

ABSTRACT

The partitioning of lipids among different microenvironments in a bilayer is of considerable relevance to characterization of composition variations in biomembranes. Atomistic simulation has been ill-suited to model equilibrated lipid mixtures because the time required for diffusive exchange of lipids among microenvironments exceeds typical submicrosecond molecular dynamics trajectories. A method to facilitate local composition fluctuations, using Monte Carlo mutations to change lipid structures within the semigrand-canonical ensemble (at a fixed difference in component chemical potentials, Deltamu), was recently implemented to address this challenge. This technique was applied here to mixtures of dimyristoylphosphatidylcholine and a shorter-tail lipid, either symmetric (didecanoylphosphatidylcholine (DDPC)) or asymmetric (hexanoyl-myristoylphosphatidylcholine), arranged in two types of structure: bilayer ribbons and buckled bilayers. In ribbons, the shorter-tail component showed a clear enrichment at the highly curved rim, more so for hexanoyl-myristoylphosphatidylcholine than for DDPC. Results on buckled bilayers were variable. Overall, the DDPC content of buckled bilayers tended to exceed by several percent the DDPC content of flat ones simulated at the same Deltamu, but only for mixtures with low overall DDPC content. Within the buckled bilayer structure, no correlation could be resolved between the sign or magnitude of the local curvature of a leaflet and the mean local lipid composition. Results are discussed in terms of packing constraints, surface area/volume ratios, and curvature elasticity.


Subject(s)
Lipid Bilayers/chemistry , Models, Molecular , Phospholipids/chemistry , Dimyristoylphosphatidylcholine/chemistry , Molecular Conformation , Phosphatidylcholines/chemistry
3.
Langmuir ; 23(5): 2308-10, 2007 Feb 27.
Article in English | MEDLINE | ID: mdl-17274639

ABSTRACT

A molecular dynamics simulation was carried out involving a paclitaxel molecule, 987 peptoad molecules, and 35 938 water molecules (conditions shown experimentally to effect paclitaxel solubilization in water). The peptoads are shown to form large clumps, the centers of which are dry and thus favorable to hydrogen bonding between paclitaxel and peptoads. Hydrogen-bonding equilibrium among the peptoads themselves in the developing clumps is achieved in 2 ns. The number and position of hydrogen bonds between the paclitaxel and peptoads fluctuate randomly from two to six within a 2-5 ns time frame. Hydrophobic association between the peptoad chains and the apolar paclitaxel groups does not seem to be an important element of the solubilization. Instead, the hydrophobic chains of the peptoads encasing the paclitaxel extend outward into the dry interior of the peptoad clump where other chains in the clump are located. One hopes that studies such as this will ultimately allow rational predictions when designing new and specific drug solubilizers.


Subject(s)
Chemistry, Physical/methods , Paclitaxel/chemistry , Chemistry, Pharmaceutical/methods , Hydrogen Bonding , Models, Chemical , Models, Molecular , Molecular Conformation , Molecular Structure , Solvents , Technology, Pharmaceutical/methods , Time Factors , X-Rays
4.
J Phys Chem B ; 110(51): 25875-82, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181235

ABSTRACT

Conventional molecular dynamics (MD) simulations are seriously limited by the slow rate of diffusive mixing in their ability to predict lateral distributions of different lipid types within mixed-lipid bilayers using atomistic models. A method to overcome this limitation, using configuration-bias Monte Carlo (MC) "mutation" moves to transform lipids from one type to another in dynamic equilibrium, is demonstrated in binary fluid-phase mixtures of lipids whose tails differ in length by four carbons. The hybrid MC-MD method operates within a semigrand canonical ensemble, so that an equilibrium composition of the mixture is determined by a constant difference in chemical potential (Delta(mu)) chosen for the components. Within several nanoseconds, bilayer structures initiated as pure dipalmitoyl phosphatidylcholine (DPPC) or pure dilauroyl phosphatidylcholine (DLPC) converge to a common composition and structure in independent simulations conducted at the same Delta(mu). Trends in bilayer thickness, area per lipid, density distributions across the bilayer, and order parameters have been investigated at three mixture compositions and compared with results from the pure bilayers at 323 K. The mixtures showed a moderate increase in DPPC acyl tail sites crossing the bilayer midplane relative to pure DPPC. Correlations between lateral positions of the two lipid types within or across the bilayer were found to be weak or absent. While the lateral distribution is consistent with nearly ideal mixing, the dependence of composition on Delta(mu) indicates a positive excess free energy of mixing.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipid Bilayers , Phosphatidylcholines/chemistry , Thermodynamics
5.
Langmuir ; 22(3): 998-1005, 2006 Jan 31.
Article in English | MEDLINE | ID: mdl-16430259

ABSTRACT

Bilayer disks and ribbons composed of a mixture of short- and long-tail phospholipids have been studied by molecular dynamics with a coarse-grained model. The effects of system composition on the edge structure, composition, and line tension were analyzed. Increases in the fraction of short-tail lipids tend to decrease the line tension (i.e., stabilize the edge) but not eliminate it. The short-tail lipid is generally enriched at the curved rim forming the bilayer edge, with an excess of 3 to 4 molecules per nanometer (relative to the bulk), but complete segregation was not observed. In all mixtures, a region depleted in the short-tail component occurs just before the edge, corresponding to a bulge in the bilayer thickness. The bulge and depletion are more prominent as the bilayer composition shifts toward a majority of short-tail lipids. In one case, a net excess of long-tail lipids at the edge was demonstrated, suggesting that certain circumstances give rise to a "segregation inversion" in which the long-tail lipid behaves as an edge stabilizer.

SELECTION OF CITATIONS
SEARCH DETAIL
...