Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786758

ABSTRACT

Volatile organic compounds (VOCs) might be associated with pulmonary oxygen toxicity (POT). This pilot study aims to identify VOCs linked to oxidative stress employing an in vitro model of alveolar basal epithelial cells exposed to hyperbaric and hyperoxic conditions. In addition, the feasibility of this in vitro model for POT biomarker research was evaluated. The hyperbaric exposure protocol, similar to the U.S. Navy Treatment Table 6, was conducted on human alveolar basal epithelial cells, and the headspace VOCs were analyzed using gas chromatography-mass spectrometry. Three compounds (nonane [p = 0.005], octanal [p = 0.009], and decane [p = 0.018]), of which nonane and decane were also identified in a previous in vivo study with similar hyperbaric exposure, varied significantly between the intervention group which was exposed to 100% oxygen and the control group which was exposed to compressed air. VOC signal intensities were lower in the intervention group, but cellular stress markers (IL8 and LDH) confirmed increased stress and injury in the intervention group. Despite the observed reductions in compound expression, the model holds promise for POT biomarker exploration, emphasizing the need for further investigation into the complex relationship between VOCs and oxidative stress.

2.
Occup Med (Lond) ; 73(8): 519, 2023 12 29.
Article in English | MEDLINE | ID: mdl-38157488
3.
4.
Metabolites ; 13(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36984755

ABSTRACT

The COMEX-30 hyperbaric treatment table is used to manage decompression sickness in divers but may result in pulmonary oxygen toxicity (POT). Volatile organic compounds (VOCs) in exhaled breath are early markers of hyperoxic stress that may be linked to POT. The present study assessed whether VOCs following COMEX-30 treatment are early markers of hyperoxic stress and/or POT in ten healthy, nonsmoking volunteers. Because more oxygen is inhaled during COMEX-30 treatment than with other treatment tables, this study hypothesized that VOCs exhaled following COMEX-30 treatment are indicators of POT. Breath samples were collected before and 0.5, 2, and 4 h after COMEX-30 treatment. All subjects were followed-up for signs of POT or other symptoms. Nine compounds were identified, with four (nonanal, decanal, ethyl acetate, and tridecane) increasing 33-500% in intensity from before to after COMEX-30 treatment. Seven subjects reported pulmonary symptoms, five reported out-of-proportion tiredness and transient ear fullness, and four had signs of mild dehydration. All VOCs identified following COMEX-30 treatment have been associated with inflammatory responses or pulmonary diseases, such as asthma or lung cancer. Because most subjects reported transient pulmonary symptoms reflecting early-stage POT, the identified VOCs are likely markers of POT, not just hyperbaric hyperoxic exposure.

5.
Metabolites ; 12(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35629974

ABSTRACT

Diving or hyperbaric oxygen therapy with increased partial pressures of oxygen (pO2) can have adverse effects such as central nervous system oxygen toxicity or pulmonary oxygen toxicity (POT). Prevention of POT has been a topic of interest for several decades. One of the most promising techniques to determine early signs of POT is the analysis of volatile organic compounds (VOCs) in exhaled breath. We reanalyzed the data of five studies to compose a library of potential exhaled markers for the early detection of POT. GC-MS data from five hyperbaric hyperoxic studies were collected. Wilcoxon signed-rank tests were used to compare baseline- and postexposure measurements; all ion fragments that significantly varied were compared by similarity using the National Institute of Standards and Technology (NIST) library. All identified molecules were cross-referenced with open-source databases and other scientific publications on VOCs to exclude compounds that occurred as a result of contamination, and to identify the compounds most likely to occur due to hyperbaric hyperoxic exposure. After identification and removal of contaminants, 29 compounds were included in the library. This library of hyperbaric hyperoxic-related VOCs can help to advance the development of an early noninvasive marker of POT. It enables validation by others who use more targeted MS-related techniques, instead of full-scale GC-MS, for their exhaled VOC research.

6.
Front Physiol ; 13: 899568, 2022.
Article in English | MEDLINE | ID: mdl-35620607

ABSTRACT

Introduction: The hyperbaric oxygen treatment table 6 (TT6) is widely used to manage dysbaric illnesses in divers and iatrogenic gas emboli in patients after surgery and other interventional procedures. These treatment tables can have adverse effects, such as pulmonary oxygen toxicity (POT). It is caused by reactive oxygen species' damaging effect in lung tissue and is often experienced after multiple days of therapy. The subclinical pulmonary effects have not been determined. The primary aim of this study was to measure volatile organic compounds (VOCs) in breath, indicative of subclinical POT after a TT6. Since the exposure would be limited, the secondary aim of this study was to determine whether these VOCs decreased to baseline levels within a few hours. Methods: Fourteen healthy, non-smoking volunteers from the Royal Netherlands Navy underwent a TT6 at the Amsterdam University Medical Center-location AMC. Breath samples for GC-MS analysis were collected before the TT6 and 30 min, 2 and 4 h after finishing. The concentrations of ions before and after exposure were compared by Wilcoxon signed-rank tests. The VOCs were identified by comparing the chromatograms with the NIST library. Compound intensities over time were tested using Friedman tests, with Wilcoxon signed-rank tests and Bonferroni corrections used for post hoc analyses. Results: Univariate analyses identified 11 compounds. Five compounds, isoprene, decane, nonane, nonanal and dodecane, showed significant changes after the Friedman test. Isoprene demonstrated a significant increase at 30 min after exposure and a subsequent decrease at 2 h. Other compounds remained constant, but declined significantly 4 h after exposure. Discussion and Conclusion: The identified VOCs consisted mainly of (methyl) alkanes, which may be generated by peroxidation of cell membranes. Other compounds may be linked to inflammatory processes, oxidative stress responses or cellular metabolism. The hypothesis, that exhaled VOCs would increase after hyperbaric exposure as an indicator of subclinical POT, was not fulfilled, except for isoprene. Hence, no evident signs of POT or subclinical pulmonary damage were detected after a TT6. Further studies on individuals recently exposed to pulmonary irritants, such as divers and individuals exposed to other hyperbaric treatment regimens, are needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...