Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957480

ABSTRACT

There is a gap between lab experiments where resistivity-soil moisture relations are generally very good and field studies in complex environmental settings where relations are always less good and complicated by many factors. An experiment was designed where environmental settings are more controlled, the best outside laboratory, to assess the transferability from lab to outdoor. A field experiment was carried out to evaluate the use of electric resistivity tomography (ERT) for monitoring soil moisture dynamics over a period of 67 days. A homogeneous site in the central part of The Netherlands was selected consisting of grass pasture on an aeolian sand soil profile. ERT values were correlated to gravimetric soil moisture samples for five depths at three different dates. Correlations ranged from 0.43 to 0.73 and were best for a soil depth of 90 cm. Resistivity patterns over time (time-lapse ERT) were analyzed and related to rainfall events where rainfall infiltration patterns could be identified. Duplicate ERT measurements showed that the noise level of the instrument and measurements is low and generally below 3% for the soil profile below the mixed layer but above the groundwater. Although the majority of the measured resistivity patterns could be well explained, some artefacts and dynamics were more difficult to clarify, even so in this homogeneous field situation. The presence of an oak tree with its root structure and a ditch with surface water with higher conductivity may have an impact on the resistivity pattern in the soil profile and over time. We conclude that ERT allows for detailed spatial measurement of local soil moisture dynamics resulting from precipitation although field experiments do not yield accuracies similar to laboratory experiments. ERT approaches are suitable for detailed spatial analyses where probe or sample-based methods are limited in reach or repeatability.

2.
Int J Appl Earth Obs Geoinf ; 64: 249-255, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29399006

ABSTRACT

In Kazakhstan, plague outbreaks occur when its main host, the great gerbil, exceeds an abundance threshold. These live in family groups in burrows, which can be mapped using remote sensing. Occupancy (percentage of burrows occupied) is a good proxy for abundance and hence the possibility of an outbreak. Here we use time series of satellite images to estimate occupancy remotely. In April and September 2013, 872 burrows were identified in the field as either occupied or empty. For satellite images acquired between April and August, 'burrow objects' were identified and matched to the field burrows. The burrow objects were represented by 25 different polygon types, then classified (using a majority vote from 10 Random Forests) as occupied or empty, using Normalized Difference Vegetation Indices (NDVI) calculated for all images. Throughout the season NDVI values were higher for empty than for occupied burrows. Occupancy status of individual burrows that were continuously occupied or empty, was classified with producer's and user's accuracy values of 63 and 64% for the optimum polygon. Occupancy level was predicted very well and differed 2% from the observed occupancy. This establishes firmly the principle that occupancy can be estimated using satellite images with the potential to predict plague outbreaks over extensive areas with much greater ease and accuracy than previously.

3.
J Biogeogr ; 42(7): 1281-1292, 2015 07.
Article in English | MEDLINE | ID: mdl-26877580

ABSTRACT

AIM: The spatial structure of a population can strongly influence the dynamics of infectious diseases, yet rarely is the underlying structure quantified. A case in point is plague, an infectious zoonotic disease caused by the bacterium Yersinia pestis. Plague dynamics within the Central Asian desert plague focus have been extensively modelled in recent years, but always with strong uniformity assumptions about the distribution of its primary reservoir host, the great gerbil (Rhombomys opimus). Yet, while clustering of this species' burrows due to social or ecological processes could have potentially significant effects on model outcomes, there is currently nothing known about the spatial distribution of inhabited burrows. Here, we address this knowledge gap by describing key aspects of the spatial patterns of great gerbil burrows in Kazakhstan. LOCATION: Kazakhstan. METHODS: Burrows were classified as either occupied or empty in 98 squares of four different sizes: 200 m (side length), 250 m, 500 m and 590-1020 m. We used Ripley's K statistic to determine whether and at what scale there was clustering of occupied burrows, and semi-variograms to quantify spatial patterns in occupied burrows at scales of 250 m to 9 km. RESULTS: Significant spatial clustering of occupied burrows occurred in 25% and 75% of squares of 500 m and 590-1020 m, respectively, but not in smaller squares. In clustered squares, the clustering criterion peaked around 250 m. Semi-variograms showed that burrow density was auto-correlated up to a distance of 7 km and occupied density up to 2.5 km. MAIN CONCLUSIONS: These results demonstrate that there is statistically significant spatial clustering of occupied burrows and that the uniformity assumptions of previous plague models should be reconsidered to assess its significance for plague transmission. This field evidence will allow for more realistic approaches to disease ecology models for both this system and for other structured host populations.

4.
Int J Health Geogr ; 12: 49, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24171709

ABSTRACT

BACKGROUND: Plague (Yersinia pestis infection) is a vector-borne disease which caused millions of human deaths in the Middle Ages. The hosts of plague are mostly rodents, and the disease is spread by the fleas that feed on them. Currently, the disease still circulates amongst sylvatic rodent populations all over the world, including great gerbil (Rhombomys opimus) populations in Central Asia. Great gerbils are social desert rodents that live in family groups in burrows, which are visible on satellite images. In great gerbil populations an abundance threshold exists, above which plague can spread causing epizootics. The spatial distribution of the host species is thought to influence the plague dynamics, such as the direction of plague spread, however no detailed analysis exists on the possible functional or structural corridors and barriers that are present in this population and landscape. This study aims to fill that gap. METHODS: Three 20 by 20 km areas with known great gerbil burrow distributions were used to analyse the spatial distribution of the burrows. Object-based image analysis was used to map the landscape at several scales, and was linked to the burrow maps. A novel object-based method was developed - the mean neighbour absolute burrow density difference (MNABDD) - to identify the optimal scale and evaluate the efficacy of using landscape objects as opposed to square cells. Multiple regression using raster maps was used to identify the landscape-ecological variables that explain burrow density best. Functional corridors and barriers were mapped using burrow density thresholds. Cumulative resistance of the burrow distribution to potential disease spread was evaluated using cost distance analysis. A 46-year plague surveillance dataset was used to evaluate whether plague spread was radially symmetric. RESULTS: The burrow distribution was found to be non-random and negatively correlated with Greenness, especially in the floodplain areas. Corridors and barriers showed a mostly NWSE alignment, suggesting easier spreading along this axis. This was confirmed by the analysis of the plague data. CONCLUSIONS: Plague spread had a predominantly NWSE direction, which is likely due to the NWSE alignment of corridors and barriers in the burrow distribution and the landscape. This finding may improve predictions of plague in the future and emphasizes the importance of including landscape analysis in wildlife disease studies.


Subject(s)
Disease Outbreaks , Geographic Mapping , Plague/epidemiology , Plague/transmission , Yersinia pestis , Animals , Asia/epidemiology , Disease Outbreaks/prevention & control , Disease Reservoirs/microbiology , Gerbillinae , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...