Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Small Methods ; 7(11): e2300647, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37649220

ABSTRACT

The crystal site occupancy of different divalent ions and the induction of lattice defects represent an additional tool for modifying the intrinsic magnetic properties of spinel ferrites nanoparticles. Here, the relevance of the lattice defects is demonstrated in the appearance of exchange-bias and in the improvement of the magnetic properties of doped ferrites of 20 nm, obtained from the mild oxidation of core@shell (wüstite@ferrite) nanoparticles. Three types of nanoparticles (Fe0.95 O@Fe3 O4 , Co0.3 Fe0.7 O@Co0.8 Fe2.2 O4 and Ni0.17 Co0.21 Fe0.62 O@Ni0.4 Co0.3 Fe2.3 O4 ) are oxidized. As a result, the core@shell morphology is removed and transformed in a spinel-like nanoparticle, through a topotactic transformation. This study shows that most of the induced defects in these nanoparticles and their magnetic properties are driven by the inability of the Co(II) ions at the octahedral sites to migrate to tetrahedral sites, at the chosen mild oxidation temperature. In addition, the appearance of crystal defects and antiphase boundaries improves the magnetic properties of the starting compounds and leads to the appearance of exchange bias at room temperature. These results highlight the validity of the proposed method to impose novel magnetic characteristics in the technologically relevant class of nanomaterials such as spinel ferrites, expanding their potential exploitation in several application fields.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513108

ABSTRACT

In the search for improved permanent magnets, fueled by the geostrategic and environmental issues associated with rare-earth-based magnets, magnetically hard (high anisotropy)-soft (high magnetization) composite magnets hold promise as alternative magnets that could replace modern permanent magnets, such as rare-earth-based and ceramic magnets, in certain applications. However, so far, the magnetic properties reported for hard-soft composites have been underwhelming. Here, an attempt to further understand the correlation between magnetic and microstructural properties in strontium ferrite-based composites, hard SrFe12O19 (SFO) ceramics with different contents of Fe particles as soft phase, both in powder and in dense injection molded magnets, is presented. In addition, the influence of soft phase particle dimension, in the nano- and micron-sized regimes, on these properties is studied. While Fe and SFO are not exchange-coupled in our magnets, a remanence that is higher than expected is measured. In fact, in composite injection molded anisotropic (magnetically oriented) magnets, remanence is improved by 2.4% with respect to a pure ferrite identical magnet. The analysis of the experimental results in combination with micromagnetic simulations allows us to establish that the type of interaction between hard and soft phases is of a dipolar nature, and is responsible for the alignment of a fraction of the soft spins with the magnetization of the hard. The mechanism unraveled in this work has implications for the development of novel hard-soft permanent magnets.

3.
ACS Appl Nano Mater ; 5(10): 14871-14881, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36338325

ABSTRACT

In this work, we demonstrate that the reduction of the local internal stress by a low-temperature solvent-mediated thermal treatment is an effective post-treatment tool for magnetic hardening of chemically synthesized nanoparticles. As a case study, we used nonstoichiometric cobalt ferrite particles of an average size of 32(8) nm synthesized by thermal decomposition, which were further subjected to solvent-mediated annealing at variable temperatures between 150 and 320 °C in an inert atmosphere. The postsynthesis treatment produces a 50% increase of the coercive field, without affecting neither the remanence ratio nor the spontaneous magnetization. As a consequence, the energy product and the magnetic energy storage capability, key features for applications as permanent magnets and magnetic hyperthermia, can be increased by ca. 70%. A deep structural, morphological, chemical, and magnetic characterization reveals that the mechanism governing the coercive field improvement is the reduction of the concomitant internal stresses induced by the low-temperature annealing postsynthesis treatment. Furthermore, we show that the medium where the mild annealing process occurs is essential to control the final properties of the nanoparticles because the classical annealing procedure (T > 350 °C) performed on a dried powder does not allow the release of the lattice stress, leading to the reduction of the initial coercive field. The strategy here proposed, therefore, constitutes a method to improve the magnetic properties of nanoparticles, which can be particularly appealing for those materials, as is the case of cobalt ferrite, currently investigated as building blocks for the development of rare-earth free permanent magnets.

4.
ACS Appl Nano Mater ; 4(2): 1057-1066, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33778418

ABSTRACT

Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices.

5.
RSC Adv ; 11(19): 11256-11265, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423627

ABSTRACT

Infections caused by the opportunistic yeast Candida albicans are one of the major life threats for hospitalized and immunocompromised patients, as a result of antibiotic and long-term antifungal treatment abuse. Odorant binding proteins can be considered interesting candidates to develop systems able to reduce the proliferation and virulence of this yeast, because of their intrinsic antimicrobial properties and complexation capabilities toward farnesol, the major quorum sensing molecule of Candida albicans. In the present study, a hybrid system characterized by a superparamagnetic iron oxide core functionalized with bovine odorant binding protein (bOBP) was successfully developed. The nanoparticles were designed to be suitable for magnetic protein delivery to inflamed areas of the body. The inorganic superparamagnetic core was characterized by an average diameter of 6.5 ± 1.1 nm and a spherical shape. Nanoparticles were functionalized by using 11-phosphonoundecanoic acid as spacer and linked to bOBP via amide bonds, resulting in a concentration level of 26.0 ± 1.2 mg bOBP/g SPIONs. Finally, both the biocompatibility of the developed hybrid system and the fungistatic activity against Candida albicans by submicromolar OBP levels were demonstrated by in vitro experiments.

6.
Nanomedicine (Lond) ; 14(6): 727-752, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30574827

ABSTRACT

AIM: Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. MATERIALS & METHODS: Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells. RESULTS: Nut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood-brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug. CONCLUSION: Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme.


Subject(s)
Drug Carriers/chemistry , Glioblastoma/drug therapy , Imidazoles/chemistry , Lipids/chemistry , Magnetite Nanoparticles/chemistry , Piperazines/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biological Transport , Blood-Brain Barrier , Cell Line, Tumor , Cell Survival/drug effects , Drug Liberation , Humans , Imidazoles/therapeutic use , Kinetics , Particle Size , Piperazines/therapeutic use , Surface Properties
7.
Nanoscale ; 11(1): 72-88, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30357214

ABSTRACT

In this study, taking into consideration the limitations of current treatments of glioblastoma multiforme, we fabricated a biomimetic lipid-based magnetic nanovector with a good loading capacity and a sustained release profile of the encapsulated chemotherapeutic drug, temozolomide. These nanostructures demonstrated an enhanced release after exposure to an alternating magnetic field, and a complete release of the encapsulated drug after the synergic effect of low pH (4.5), increased concentration of hydrogen peroxide (50 µM), and increased temperature due to the applied magnetic field. In addition, these nanovectors presented excellent specific absorption rate values (up to 1345 W g-1) considering the size of the magnetic component, rendering them suitable as potential hyperthermia agents. The presented nanovectors were progressively internalized in U-87 MG cells and in their acidic compartments (i.e., lysosomes and late endosomes) without affecting the viability of the cells, and their ability to cross the blood-brain barrier was preliminarily investigated using an in vitro brain endothelial cell-model. When stimulated with alternating magnetic fields (20 mT, 750 kHz), the nanovectors demonstrated their ability to induce mild hyperthermia (43 °C) and strong anticancer effects against U-87 MG cells (scarce survival of cells characterized by low proliferation rates and high apoptosis levels). The optimal anticancer effects resulted from the synergic combination of hyperthermia chronic stimulation and the controlled temozolomide release, highlighting the potential of the proposed drug-loaded lipid magnetic nanovectors for treatment of glioblastoma multiforme.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Hyperthermia, Induced/methods , Lipids/chemistry , Magnetite Nanoparticles/chemistry , Blood-Brain Barrier , Cell Line, Tumor , Cell Proliferation , Drug Delivery Systems , Endosomes/chemistry , Humans , Hydrogen Peroxide , Hydrogen-Ion Concentration , Lysosomes/chemistry , Magnetics , Nanoparticles/chemistry , Temperature
8.
Adv Healthc Mater ; 4(11): 1681-90, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26039933

ABSTRACT

Sorafenib is an anticancer drug approved by the Food and Drug Administration for the treatment of hepatocellular and advanced renal carcinoma. The clinical application of sorafenib is promising, yet limited by its severe toxic side effects. The aim of this study is to develop sorafenib-loaded magnetic nanovectors able to enhance the drug delivery to the disease site with the help of a remote magnetic field, thus enabling cancer treatment while limiting negative effects on healthy tissues. Sorafenib and superparamagnetic iron oxide nanoparticles are encapsulated in solid lipid nanoparticles by a hot homogenization technique using cetyl palmitate as lipid matrix. The obtained nanoparticles (Sor-Mag-SLNs) have a sorafenib loading efficiency of about 90% and are found to be very stable in an aqueous environment. Plain Mag-SLNs exhibit good cytocompatibility, whereas an antiproliferative effect against tumor cells (human hepatocarcinoma HepG2) is observed for drug-loaded Sor-Mag-SLNs. The obtained results show that it is possible to prepare stable Sor-Mag-SLNs able to inhibit cancer cell proliferation through the sorafenib cytotoxic action, and to enhance/localize this effect in a desired area thanks to a magnetically driven accumulation of the drug. Moreover, the relaxivity properties observed in water suspensions hold promise for Sor-Mag-SLN tracking through clinical magnetic resonance imaging.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Magnetite Nanoparticles/chemistry , Niacinamide/analogs & derivatives , Phenylurea Compounds/chemistry , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Dextrans/chemistry , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Magnetic Resonance Imaging , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Niacinamide/chemistry , Niacinamide/toxicity , Phenylurea Compounds/toxicity , Sorafenib
9.
Phys Chem Chem Phys ; 17(8): 6087-97, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25645178

ABSTRACT

Nanotechnology for biomedicine has recently attracted increasing interest from the scientific community. In particular, among the different nanodevices suitable for this application, multifunctionalizable hybrid nanoparticles are one of the most investigated research topics. Here we present a detailed physico-chemical characterization of hybrid magneto-plasmonic iron oxide-gold nanoparticles (NPs) with core-shell structure. In particular, we underline all the synthetic difficulties concerning the preparation of these systems. Based on all our results, after different tests of a commonly reported protocol for the synthesis of the core-shell system, we believe that several issues are still open in the synthetic preparation of these particular NPs. Indeed, at least for the conditions that we adopted, core-shell morphology nanoparticles cannot be produced. However, independent of the core structure, we describe here an optimized and efficient functionalization protocol to obtain stable nanoparticle aqueous suspensions, which can be easily exported to other kinds of metal and metal-oxide NPs and used to develop biocompatible systems. Furthermore, reliable information that could be useful for researchers working in this field is extensively discussed.


Subject(s)
Ferrosoferric Oxide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Electron Spin Resonance Spectroscopy , Light , Neutron Diffraction , Scattering, Radiation , Scattering, Small Angle
10.
Nanoscale ; 5(12): 5611-9, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23685617

ABSTRACT

We describe an environmentally friendly, top-down approach to the synthesis of Au89Fe11 nanoparticles (NPs). The plasmonic response of the gold moiety and the magnetism of the iron moiety coexist in the Au89Fe11 nanoalloy with strong modification compared to single element NPs, revealing a non-linear surface plasmon resonance dependence on the iron fraction and a transition from paramagnetic to a spin-glass state at low temperature. These nanoalloys are accessible to conjugation with thiolated molecules and they are promising contrast agents for magnetic resonance imaging.


Subject(s)
Alloys/chemistry , Contrast Media/chemistry , Magnetics , Metal Nanoparticles/chemistry , Gold/chemistry , Iron/chemistry , Magnetic Resonance Imaging , Polyethylene Glycols/chemistry , Temperature , Thermodynamics
11.
ACS Nano ; 7(1): 857-66, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23249172

ABSTRACT

We report on the unprecedented direct observation of spin-polarization transfer across colloidal magneto-plasmonic Au@Fe-oxide core@shell nanocrystal heterostructures. A magnetic moment is induced into the Au domain when the magnetic shell contains a reduced Fe-oxide phase in direct contact with the noble metal. An increased hole density in the Au states suggested occurrence of a charge-transfer process concomitant to the magnetization transfer. The angular to spin magnetic moment ratio, m(orb)/m(spin), for the Au 5d states, which was found to be equal to 0.38, appeared to be unusually large when compared to previous findings. A mechanism relying on direct hybridization between the Au and Fe states at the core/shell interface is proposed to account for the observed transfer of the magnetic moment.


Subject(s)
Colloids/chemistry , Ferric Compounds/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Surface Plasmon Resonance/methods , Magnetic Fields , Materials Testing , Spin Labels
13.
Dalton Trans ; 39(36): 8464-71, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20714614

ABSTRACT

The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C-C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl(3) reduced by 3 equivalents of EtMgCl forms an active catalyst for the hydrogenation of a range of olefins and alkynes. Olefin hydrogenation is relatively fast at 5 bar using 5 mol% of catalyst. The catalyst is also active for terminal olefins and 1,1' and 1,2-cis disubstituted olefins while trans-olefins react much slower. 1-Octyne is hydrogenated to mixtures of 1-octene and octane. Kinetic studies led us to propose a mechanism for this latter transformation where octane is obtained by two different pathways. Characterization of the nanoparticles via TEM, magnetic measurements and poisoning experiments were undertaken to understand the true nature of our catalyst.


Subject(s)
Alkenes/chemistry , Alkynes/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Catalysis , Hydrogenation , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...