Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 652(1-2): 285-94, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-19786194

ABSTRACT

Eu(III) luminescence spectroscopy, both in the steady-state and the time-resolved mode, is an appropriate technique to study the properties of complexes between heavy metal ions and humic substances (HS), which play a key role in the distribution of metal species in the environment. Unfortunately, room temperature luminescence spectra of Eu(III) complexes with aromatic and aliphatic carboxylic acids - model compounds of HS binding sites - are too broad to fully exploit their potential analytical information content. It is shown that under cryogenic conditions fluorescence-line-narrowing (FLN) is achieved, and the highly resolved spectra provide detailed information on the complexes. Ten model ligands were investigated. Total luminescence spectra (TLS) were recorded, using the (5)D(0)<--(7)F(0) transition for excitation and the (5)D(0)-->(7)F(1) and (5)D(0)-->(7)F(2) transitions for emission. The energy of the excitation transition depends on the ligand involved and the structure and composition of the complex. For most ligands, discontinuities in the high-resolution TLS indicated that more species, i.e. distinct complex structures, coexisted in the sample. Selective excitation was performed to measure the species-associated luminescence decay times tau. The latter strongly depend on nearby OH oscillators from coordinating water molecules or ligand hydroxyl groups. Furthermore, the asymmetry ratios r, defined as the intensity ratio of the (5)D(0)-->(7)F(2) and (5)D(0)-->(7)F(1) transitions, were calculated and the variation of the excitation energy E(exc) with the splitting of the (7)F(1) triplet (DeltaE) was determined, which yielded the crystal field strength parameter N(nu)(B(2q)), as well as the crystal field parameters B(20) and B(22). An in-depth analysis of the results is presented, providing detailed information on the number of coexisting complexes, their stoichiometry, the number of water molecules in the first coordination sphere and their geometry (symmetry point group).


Subject(s)
Acids, Acyclic/chemistry , Acids, Carbocyclic/chemistry , Europium/chemistry , Spectrometry, Fluorescence/methods , Spectrophotometry, Atomic/methods , Algorithms , Humic Substances , Luminescence , Time Factors
2.
J Phys Chem A ; 113(18): 5273-9, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19364110

ABSTRACT

Pyrazoloquinolines are highly fluorescent, both in liquid solutions and in the solid state, which makes them good candidates for various optical devices. The aim of the current work is to understand the photochemical behavior of pyrazolo[3,4-b]quinoline (PQ), which is quite complicated since in n-alkane solvents PQ tends to form strong complexes with protic solvent constituents (often present as minor impurities), as well as dimers. Both types of H-bond complexes were studied systematically by temperature-dependent conventional absorption and fluorescence spectroscopy; the effect of protic solvent constituents was mimicked by varying the ethanol concentration in n-octane in the range from 0.0 to 0.8%. At room temperature the PQ:ethanol association constant was estimated at 80 M(-1) and the dimerization constant at 2 x 10(3) M(-1). Dimer formation is enhanced upon lowering the temperature in pure n-alkane down to 220 K, and the fluorescence is strongly reduced since the dimer is nonfluorescent. Surprisingly, when irradiating a frozen sample for several minutes at very low temperatures (<40 K), a narrow-banded Shpol'skii-type fluorescence spectrum gradually appears. To explain this unusual photochemical behavior, PQ and its deuterated analogue were studied using low-temperature absorption and fluorescence spectroscopy over the 300-5 K temperature range. In the case of normal (protonated) PQ, very fast excited-state intermolecular double proton transfer is responsible for the efficient quenching of PQ dimer fluorescence. Deuteration significantly slows down this proton transfer process, and in that case under cryogenic conditions a fluorescent dimer is observed. Photoirradiation under cryogenic conditions leads to molecular rearrangement of the dimers and the appearance of monomer spectra. For both H-PQ and D-PQ, these processes were found to be reversible. A simplified reaction scheme, in which the excited tautomeric dimer plays a crucial role, is presented to explain the observations.

3.
Article in English | MEDLINE | ID: mdl-18977168

ABSTRACT

2-Butylamino-6-methyl-4-nitropyridine-N-oxide (2B6M) belongs to a group of compounds that can undergo not only excited-state intra-, but also intermolecular proton transfer. The latter of course requires the presence of dimeric species. Previously, we have shown that for 2B6M in aprotic non-polar solvents in the liquid state such dimers play no role. Under these conditions, only one single monomeric species exists, exhibiting anomalous fluorescence behavior, i.e. proton transfer not only starting from the lowest excited electronic singlet state, but also from higher excited states. However, we also noted that under frozen, crystalline matrix conditions more species show up in the spectra. In order to study this multi-species system in more detail, we present absorption and fluorescence experiments on 2B6M, recorded in n-octane at various temperatures between 293 and 5 K. High-resolution spectra are included, not only in fluorescence but also in absorption. We demonstrate that under cryogenic conditions three species can be discerned, two of these providing high-resolution spectra with their main 0-0 lines around 452 and 465 nm, respectively. A detailed vibrational analysis of their emission spectra is included. The third species gives broad-banded spectra, in absorption extending to about 520 nm with its long-wavelength maximum around 460 nm, in emission with a maximum around 535 nm. We tentatively assign the three species to a monomer, a H-bonded dimer and a strongly interacting (pi-pi-stacked) dimer, respectively. We conclude from the excitation spectra that (anomalous) intramolecular proton transfer at higher excited states is still operative under cryogenic conditions. Indications for excited-state intermolecular proton transfer in the stacked dimeric species were not found.


Subject(s)
Cold Temperature , Pyridines/chemistry , Absorption , Octanes/chemistry , Spectrometry, Fluorescence , Vibration
4.
J Phys Chem A ; 111(26): 5828-32, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17559196

ABSTRACT

This article describes the exceptional photophysics of 2-butylamino-6-methyl-4-nitropyridine N-oxide (2B6M). It is known from the literature that this compound may undergo excited-state intra- or intermolecular proton-transfer reactions. In nonpolar solvents, 2B6M exhibits an unusual fluorescence behavior: there is a substantial difference between the relative band intensities of the excitation and absorption spectra. Furthermore, in emission two bands are observed, and their relative intensities depend on the excitation wavelength, thus violating the Kasha-Vavilov rule. It is the objective of this research to interpret these results. For this purpose, steady-state fluorescence excitation and emission spectra in the liquid state were recorded and quantum yields were determined for the two types of emission. In addition, absorption spectra were measured at room temperature and under low-temperature conditions. Finally, fluorescence lifetimes of the emitting species were determined using the time-correlated single photon counting technique. The results suggest that in the liquid state only one (monomeric) ground state species dominates, which can emit via two different pathways (from the normal and the tautomeric excited state). The excitation spectra point at two different internal proton-transfer processes, one starting at the S1 state and one starting at the S2 state. On the basis of the measured lifetimes and fluorescence quantum yields, a kinetic scheme was completed that can quantitatively explain the observations.


Subject(s)
Nanostructures/chemistry , Protons , Pyridines/chemistry , Molecular Structure , Solutions , Spectrophotometry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...