Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 1(2)2013 Aug.
Article in English | MEDLINE | ID: mdl-23914298

ABSTRACT

Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in adipose tissue, however altered hepatic lipid regulation may play a contributory role.

2.
Nutr Diabetes ; 2: e27, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-23169552

ABSTRACT

OBJECTIVES: Because females have blunted counterregulatory responses to hypoglycemia relative to males, we hypothesized that females would have greater sensitivity to changes in lipid availability. DESIGN AND SUBJECTS: To assess this, we examined the feeding response to glucoprivation (2-deoxyglucose; 2DG) and lipoprivation (mercaptoacetate; MA) in age-matched male and female Long-Evans rats. RESULTS: Males versus females had significantly greater food intake after 250 mg kg(-1) of 2DG, but there were no sex differences with the 750 mg kg(-1) dose of 2DG. Glucose responses to 250 mg kg(-1) of 2DG were also significantly greater in males versus females. In contrast, females had a significant increase in food intake with all doses of MA versus saline, and had significantly greater food intake compared with males at the lowest and highest doses of MA with a trend towards significance with the intermediate dose. To determine whether estradiol (E2) is the mechanism underlying this sexual dimorphism, ovariectomized females were injected with vehicle or 2 µg of E2 every fourth day to mimic the variations in across the estrous cycle. Ovariectomized females significantly increased feeding and glucose after 250 mg kg(-1) of 2DG over intact females and E2 had no effect on these responses. Although the feeding response to 2DG was not different, the glucose response to 2DG was still significantly greater in males versus ovariectomies females. However, ovariectomized females also did not increase food intake after MA, regardless of E2 treatment. CONCLUSIONS: These data collectively suggest that males are relatively more sensitive to glucose deprivation and females are relatively more sensitive to lipid deprivation. Further, these data rule out a role for cyclic changes in E2 in these sex differences.

SELECTION OF CITATIONS
SEARCH DETAIL
...