Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 20(10): 1224-1235, 2020 10.
Article in English | MEDLINE | ID: mdl-33001758

ABSTRACT

The detection and identification of biosignatures on planetary bodies such as Mars in situ is extremely challenging. Current knowledge from space exploration missions suggests that a suite of complementary instruments is required in situ for a successful identification of past or present life. For future exploration missions, new and innovative instrumentation capable of high spatial resolution chemical (elemental and isotope) analysis of solids with improved measurement capabilities is of considerable interest because a multitude of potential signatures of extinct or extant life have dimensions on the micrometer scale. The aim of this study is to extend the current measurement capabilities of a miniature laser ablation ionization mass spectrometer (LIMS) designed for space exploration missions to detect signatures of microbial life. In total, 14 martian mudstone analogue samples were investigated regarding their elemental composition. Half the samples were artificially inoculated with a low number density of microbes, and half were used as abiotic controls. The samples were treated in a number of ways. Some were cultured anaerobically and some aerobically; some abiotic samples were incubated with water, and some remained dry. Some of the samples were exposed to a large dose of γ radiation, and some were left un-irradiated. While no significant elemental differences were observed between the applied sample treatments, the instrument showed the capability to detect biogenic element signatures of the inoculated microbes by monitoring biologically relevant elements, such as hydrogen, carbon, sulfur, iron, and so on. When an enrichment in carbon was measured in the samples but no simultaneous increase in other biologically relevant elements was detected, it suggests, for example, a carbon-containing inclusion; when the enrichment was in carbon and in bio-relevant elements, it suggests the presences of microbes. This study presents first results on the detection of biogenic element patterns of microbial life using a miniature LIMS system designed for space exploration missions.


Subject(s)
Bacteria/isolation & purification , Exobiology , Extraterrestrial Environment , Mars , Bacteria/chemistry , Isotopes , Lasers , Mass Spectrometry
2.
Sci Rep ; 9(1): 9706, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273294

ABSTRACT

Discovery of a remnant habitable environment by the Mars Science Laboratory in the sedimentary record of Gale Crater has reinvigorated the search for evidence of martian life. In this study, we used a simulated martian mudstone material, based on data from Gale Crater, that was inoculated and cultured over several months and then dried and pressed. The simulated mudstone was analysed with a range of techniques to investigate the detectability of biosignatures. Cell counting and DNA extraction showed a diverse but low biomass microbial community that was highly dispersed. Pellets were analysed with bulk Elemental Analysis - Isotope Ratio Mass Spectrometry (EA-IRMS), high-resolution Laser-ablation Ionisation Mass Spectrometry (LIMS), Raman spectroscopy and Fourier Transform InfraRed (FTIR) spectroscopy, which are all techniques of relevance to current and future space missions. Bulk analytical techniques were unable to differentiate between inoculated samples and abiotic controls, despite total levels of organic carbon comparable with that of the martian surface. Raman spectroscopy, FTIR spectroscopy and LIMS, which are high sensitivity techniques that provide chemical information at high spatial resolution, retrieved presumptive biosignatures but these remained ambiguous and the sedimentary matrix presented challenges for all techniques. This suggests challenges for detecting definitive evidence for life, both in the simulated lacustrine environment via standard microbiological techniques and in the simulated mudstone via analytical techniques with relevance to robotic missions. Our study suggests that multiple co-incident high-sensitivity techniques that can scan the same micrometre-scale spots are required to unambiguously detect biosignatures, but the spatial coverage of these techniques needs to be high enough not to miss individual cellular-scale structures in the matrix.


Subject(s)
Bacteria/classification , DNA, Bacterial/analysis , Exobiology , Extraterrestrial Environment/chemistry , Geologic Sediments/analysis , Mars , Microbiota , Bacteria/genetics , Bacteria/isolation & purification , Biomass , Computer Simulation , Spectrum Analysis, Raman
3.
Appl Microbiol Biotechnol ; 102(21): 9231-9242, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30136203

ABSTRACT

Mycobacterium tuberculosis (Mtb) codes for 20 cytochrome P450 enzymes (CYPs), considered potential drug-targets due to their essential roles in bacterial viability and host infection. Catalytic activity of mycobacterial CYPs is dependent on electron transfer from a NAD (P)H-ferredoxin-reductase (FNR) and a ferredoxin (Fd). Two FNRs (FdrA and FprA) and five ferredoxins (Fdx, FdxA, FdxC, FdxD, and Rv1786) have been found in the Mtb genome. However, as of yet, the cognate redox partnerships have not been fully established. This is confounded by the fact that heterologous redox partners are routinely used to reconstitute Mtb CYP metabolism. To this end, this study aimed to biochemically characterize and identify cognate redox partnerships for Mtb CYPs. Interestingly, all combinations of FNRs and ferredoxins were active in the reduction of oxidized cytochrome c, but steady-state kinetic assays revealed FdxD as the most efficient redox partner for FdrA, whereas Fdx coupled preferably with FprA. CYP121A1, CYP124A1, CYP125A1, and CYP142A1 metabolism with the cognate redox partners was reconstituted in vitro showing an unanticipated selectivity in the requirement for electron transfer partnership, which did not necessarily correlate with proximity in the genome. This is the first description of microbial P450 metabolism in which multiple ferredoxins are functionally linked to multiple CYPs.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Ferredoxins/metabolism , Mycobacterium tuberculosis/metabolism , Amino Acid Sequence , Electron Transport/physiology , Kinetics , Oxidation-Reduction , Oxidoreductases/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...