Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Drug Deliv Rev ; 178: 113960, 2021 11.
Article in English | MEDLINE | ID: mdl-34481036

ABSTRACT

In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.


Subject(s)
Biocompatible Materials/chemistry , Cardiovascular System/chemistry , Heart Valve Prosthesis , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Humans
2.
Acta Biomater ; 135: 243-259, 2021 11.
Article in English | MEDLINE | ID: mdl-34509697

ABSTRACT

In situ heart valve tissue engineering is an emerging approach in which resorbable, off-the-shelf available scaffolds are used to induce endogenous heart valve restoration. Such scaffolds are designed to recruit endogenous cells in vivo, which subsequently resorb polymer and produce and remodel new valvular tissue in situ. Recently, preclinical studies using electrospun supramolecular elastomeric valvular grafts have shown that this approach enables in situ regeneration of pulmonary valves with long-term functionality in vivo. However, the evolution and mechanisms of inflammation, polymer absorption and tissue regeneration are largely unknown, and adverse valve remodeling and intra- and inter-valvular variability have been reported. Therefore, the goal of the present study was to gain a mechanistic understanding of the in vivo regenerative processes by combining routine histology and immunohistochemistry, using a comprehensive sheep-specific antibody panel, with Raman microspectroscopy for the spatiotemporal analysis of in situ tissue-engineered pulmonary valves with follow-up to 24 months from a previous preclinical study in sheep. The analyses revealed a strong spatial heterogeneity in the influx of inflammatory cells, graft resorption, and foreign body giant cells. Collagen maturation occurred predominantly between 6 and 12 months after implantation, which was accompanied by a progressive switch to a more quiescent phenotype of infiltrating cells with properties of valvular interstitial cells. Variability among specimens in the extent of tissue remodeling was observed for follow-up times after 6 months. Taken together, these findings advance the understanding of key events and mechanisms in material-driven in situ heart valve tissue engineering. STATEMENT OF SIGNIFICANCE: This study describes for the first time the long-term in vivo inflammatory and regenerative processes that underly in situ heart valve tissue engineering using resorbable synthetic scaffolds. Using a unique combinatorial analysis of immunohistochemistry and Raman microspectroscopy, important spatiotemporal variability in graft resorption and tissue formation was pinpointed in in situ tissue-engineered heart valves, with a follow-up time of up to 24 months in sheep. This variability was correlated to heterogenous regional cellular repopulation, most likely instigated by region-specific differences in surrounding tissue and hemodynamics. The findings of this research contribute to the mechanistic understanding of in situ tissue engineering using resorbable synthetics, which is necessary to enable rational design of improved grafts, and ensure safe and robust clinical translation.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Heart Valve Prosthesis , Pulmonary Valve , Absorbable Implants , Animals , Aortic Valve , Cells, Cultured , Heart Valves , Sheep , Tissue Engineering
3.
Transfus Apher Sci ; 34(3): 289-98, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16815757

ABSTRACT

For peacekeeping and peace enforcing missions abroad the Netherlands Armed Forces decided to use universal donor frozen blood products in addition to liquid products. This article describes our experiences with the frozen blood inventory, with special attention to quality control. It is shown that all thawed (washed) blood products are in compliance with international regulations and guidelines. By means of the -80 degrees C frozen stock of red cells, plasma and platelets readily available after thaw (and wash), we can now safely reduce shipments and abandon the backup 'walking' blood bank, without compromising the availability of blood products in theatre.


Subject(s)
Blood Preservation , Cryopreservation , Military Medicine , Blood Banks/standards , Blood Banks/supply & distribution , Blood Preservation/standards , Cryopreservation/standards , Humans , Netherlands , Quality Control
4.
J Bacteriol ; 182(17): 4934-40, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10940038

ABSTRACT

The capacity of Escherichia coli to adapt its catabolism to prevailing redox conditions resides mainly in three catabolic branch points involving (i) pyruvate formate-lyase (PFL) and the pyruvate dehydrogenase complex (PDHc), (ii) the exclusively fermentative enzymes and those of the Krebs cycle, and (iii) the alternative terminal cytochrome bd and cytochrome bo oxidases. A quantitative analysis of the relative catabolic fluxes through these pathways is presented for steady-state glucose-limited chemostat cultures with controlled oxygen availability ranging from full aerobiosis to complete anaerobiosis. Remarkably, PFL contributed significantly to the catabolic flux under microaerobic conditions and was found to be active simultaneously with PDHc and cytochrome bd oxidase-dependent respiration. The synthesis of PFL and cytochrome bd oxidase was found to be maximal in the lower microaerobic range but not in a delta ArcA mutant, and we conclude that the Arc system is more active with respect to regulation of these two positively regulated operons during microaerobiosis than during anaerobiosis.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Electron Transport Chain Complex Proteins , Escherichia coli Proteins , Escherichia coli/metabolism , Membrane Proteins/metabolism , Protein Kinases/metabolism , Pyruvic Acid/metabolism , Repressor Proteins , Acetyltransferases/metabolism , Bacterial Outer Membrane Proteins/genetics , Cytochrome b Group , Cytochromes/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Glucose/metabolism , Membrane Proteins/genetics , NAD/metabolism , Oxidoreductases/metabolism , Oxygen/metabolism , Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...